Transcription and processing of Bacillus subtilis small cytoplasmic RNA. 1989

J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
Freie Universität Berlin, Institut für Biochemie.

The 271 nucleotides long scRNA (small cytoplasmic RNA) from Bacillus subtilis is structurally related to the Escherichia coli 4.5 S RNA (114 nucleotides), an essential molecule supposed to be involved in protein biosynthesis, but it possesses an additional moiety completely missing in the E. coli 4.5 S RNA. Both RNAs share a conserved hairpin with the eukaryotic 7SL RNAs, which mediate protein translocation as part of the signal recognition particle (SRP). We have cloned and sequenced the entire scRNA gene region from B. subtilis and have studied transcription and processing of the scRNA in B. subtilis by nuclease S1 mapping. This analysis revealed the scRNA gene to constitute a monofunctional transcription unit, expressed from a single promoter to a rho-independent terminator, yielding a precursor which extends the mature scRNA by approximately 40 nucleotides at both ends. Processing of the scRNA apparently involves only two endonucleolytic cuts and occurs first at the 5' end.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015183 Restriction Mapping Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA. Endonuclease Mapping, Restriction,Enzyme Mapping, Restriction,Site Mapping, Restriction,Analysis, Restriction Enzyme,Enzyme Analysis, Restriction,Restriction Enzyme Analysis,Analyses, Restriction Enzyme,Endonuclease Mappings, Restriction,Enzyme Analyses, Restriction,Enzyme Mappings, Restriction,Mapping, Restriction,Mapping, Restriction Endonuclease,Mapping, Restriction Enzyme,Mapping, Restriction Site,Mappings, Restriction,Mappings, Restriction Endonuclease,Mappings, Restriction Enzyme,Mappings, Restriction Site,Restriction Endonuclease Mapping,Restriction Endonuclease Mappings,Restriction Enzyme Analyses,Restriction Enzyme Mapping,Restriction Enzyme Mappings,Restriction Mappings,Restriction Site Mapping,Restriction Site Mappings,Site Mappings, Restriction

Related Publications

J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
January 2007, Nucleic acids research,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
September 2009, Journal of bacteriology,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
May 1995, Biochemical and biophysical research communications,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
June 2003, Microbiology and molecular biology reviews : MMBR,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
July 1990, Molecular & general genetics : MGG,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
April 1992, Journal of bacteriology,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
January 1994, Journal of bacteriology,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
July 1998, The Journal of biological chemistry,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
October 2005, Journal of bacteriology,
J C Struck, and R K Hartmann, and H Y Toschka, and V A Erdmann
February 1982, Journal of general microbiology,
Copied contents to your clipboard!