Role of calcium in histamine release from rat mast cells activated by various secretagogues; intracellular calcium mobilization correlates with histamine release. 1989

M Takei, and H Urashima, and K Endo, and M Muramatu
Faculty of Pharmacy, Tokushima Bunri University.

Anti-IgE, con A or antigen caused an increase in the intracellular calcium concentration, [Ca2+]i, of mast cells. The increase occurred in two stages: a rapid initial rise caused by Ca-mobilization from intracellular Ca-stores and a second sustained rise caused by an influx of extracellular calcium (White, J.R., Pluznik, D.V., Ishizaka, K. & Ishizaka, T. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8193-8197). The rapid initial rise was followed by a release of histamine, which seemed to coincide with the second rise. A23187 and compound 48/80 induced a rapid initial rise in [Ca2+]i, followed by a gradual decrease in [Ca2+]i, GMCHA-OPhBut, a specific pH 7 tryptase inhibitor (Muramatu, M., Ito, T., Takei, M. & Endo, K. (1988) Biol. Chem. Hoppe-Seyler 369, 617-625), strongly inhibited both the initial and second rises of [Ca2+]i, as well as histamine release by these secretagogues, and its effects on the initial rise were closely correlated with those on histamine release. Addition of GMCHA-OPhBut immediately after the initial rise strongly inhibited the second rise, thereby decreasing the final [Ca2+]i. These results strongly suggested a possible involvement of pH 7 tryptase, not only in Ca-mobilization leading to the initial rise in [Ca2+]i, but also in the second rise. Trapping of extracellular calcium by 3mM EGTA decreased both the initial rise in [Ca2+]i and histamine secretion induced by anti-IgE or con A; the magnitude of this effect depended on the time between induction and EGTA addition. Histamine release was closely correlated with the initial rise in [Ca2+]i. Similar results were obtained with A23187, but even 5 min after the addition of EGTA an initial rise of [Ca2+]i could still be induced, and histamine (30% of total histamine) was still released. However, A23187 did not induce a rise in [Ca2+]i in mast cells which had been exhaustively washed with Tyrode/Hepes solution containing 3mM EGTA, followed by suspension in the same solution. Even at 20 min after depletion of the extracellular calcium, compound 48/80 still caused an initial rise in [Ca2+]i to above half the maximal value, and histamine secretion was even less affected. The above results indicated that the initial rise in [Ca2+]i, due to Ca-mobilization, correlates with the histamine release promoted by the secretagogues described. On the other hand, isoproterenol strongly induced histamine secretion with no change of [Ca2+]i, while EGTA treatment prior to isoproterenol stimulation had no effect on histamine release, indicating a different secretion mechanism.

UI MeSH Term Description Entries
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D008407 Mast Cells Granulated cells that are found in almost all tissues, most abundantly in the skin and the gastrointestinal tract. Like the BASOPHILS, mast cells contain large amounts of HISTAMINE and HEPARIN. Unlike basophils, mast cells normally remain in the tissues and do not circulate in the blood. Mast cells, derived from the bone marrow stem cells, are regulated by the STEM CELL FACTOR. Basophils, Tissue,Basophil, Tissue,Cell, Mast,Cells, Mast,Mast Cell,Tissue Basophil,Tissue Basophils
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003189 p-Methoxy-N-methylphenethylamine A potent mast cell degranulator. It is involved in histamine release. Agent 48-80,BW 48-80,Compound 48-80,Preparation 48-80,Agent 48 80,Agent 4880,BW 48 80,BW 4880,Compound 48 80,Compound 4880,Preparation 48 80,Preparation 4880,p Methoxy N methylphenethylamine
D003509 Cyclohexanecarboxylic Acids Carboxylic acid derivatives of cyclohexane. Acids, Cyclohexanecarboxylic
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D006636 Histamine Release The secretion of histamine from mast cell and basophil granules by exocytosis. This can be initiated by a number of factors, all of which involve binding of IgE, cross-linked by antigen, to the mast cell or basophil's Fc receptors. Once released, histamine binds to a number of different target cell receptors and exerts a wide variety of effects. Histamine Liberation,Histamine Liberations,Histamine Releases

Related Publications

M Takei, and H Urashima, and K Endo, and M Muramatu
April 1984, Agents and actions,
M Takei, and H Urashima, and K Endo, and M Muramatu
June 1992, Journal of pharmaceutical sciences,
M Takei, and H Urashima, and K Endo, and M Muramatu
April 1986, Agents and actions,
M Takei, and H Urashima, and K Endo, and M Muramatu
September 1985, Experientia,
M Takei, and H Urashima, and K Endo, and M Muramatu
March 1969, Japanese journal of pharmacology,
M Takei, and H Urashima, and K Endo, and M Muramatu
January 1980, International archives of allergy and applied immunology,
M Takei, and H Urashima, and K Endo, and M Muramatu
April 1981, Agents and actions,
M Takei, and H Urashima, and K Endo, and M Muramatu
January 1978, International archives of allergy and applied immunology,
M Takei, and H Urashima, and K Endo, and M Muramatu
June 1993, The Journal of physiology,
M Takei, and H Urashima, and K Endo, and M Muramatu
January 1986, International archives of allergy and applied immunology,
Copied contents to your clipboard!