Characterization of MgATP-driven H+ uptake into a microsomal vesicle fraction from rat pancreatic acinar cells. 1989

F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
Max-Planck-Institut für Biophysik, Frankfurt/Main, Federal Republic of Germany.

In microsomal vesicles, as isolated from exocrine pancreas cells, MgATP-driven H+ transport was evaluated by measuring H+-dependent accumulation of acridine orange (AO). Active H+ uptake showed an absolute requirement for ATP with simple Michaelis-Menten kinetics (Km for ATP 0.43 mmol/liter) with a Hill coefficient of 0.99. H+ transport was maximal at an external pH of 6.7, generating an intravesicular pH of 4.8. MgATP-dependent H+ accumulation was abolished by protonophores, such as nigericin (10(-6) mol/liter) or CCCP (10(-5) mol/liter), and by inhibitors of nonmitochondrial H+ ATPases, such as NEM or NBD-Cl, at a concentration of 10(-5) mol/liter. Inhibitors of both mitochondrial and nonmitochondrial H+ pumps, such as DCCD (10(-5) mol/liter) or Dio 9 (0.25 mg/ml), reduced microsomal H+ transport by about 90%. Vanadate (2 x 10(-3) mol/liter), a blocker of those ATPases, which form a phosphorylated intermediate, did not inhibit H+ transport. The stilbene derivative DIDS (10(-4) mol/liter), which inhibits anion transport systems, abolished H+ transport completely. MgATP-dependent H+ transport was found to be anion dependent in the sequence Cl- greater than Br- greater than gluconate-; in the presence of SO2-4, CH3COO- or No-3, no H+ transport was observed. MgATP-dependent H+ accumulation was also cation dependent in the sequence K+ greater than Li+ greater than Na+ = choline+. As shown by dissipation experiments in the presence of different ion gradients and ionophores, both a Cl- and a K+ conductance, as well as a small H+ conductance, were found in the microsomal membranes. When membranes containing the H+ pump were further purified by Percoll gradient centrifugation (ninefold enrichment compared to homogenate), no correlation with markers for endoplasmic reticulum, mitochondria, plasma membranes, zymogen granules or Golgi membranes was found. The present data indicate that the H+ pump located in microsomes from rat exocrine pancreas is a vacuolar- or "V" -type H+ ATPase and has most similarities to that described in endoplasmic reticulum, Golgi apparatus or endosomes.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000165 Acridine Orange A cationic cytochemical stain specific for cell nuclei, especially DNA. It is used as a supravital stain and in fluorescence cytochemistry. It may cause mutations in microorganisms. Tetramethyl Acridine Diamine,3,6-Bis(dimethylamino)acridine,Acridine Orange Base,Basic Orange 3RN,C.I. 46005,C.I. Basic Orange 14,Euchrysine,N,N,N',N'-Tetramethyl-3,6-Acridinediamine Hydrochloride,Rhoduline Orange,Acridine Diamine, Tetramethyl,Base, Acridine Orange,Diamine, Tetramethyl Acridine,Orange 3RN, Basic,Orange Base, Acridine,Orange, Acridine,Orange, Rhoduline
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
July 2006, International journal of molecular medicine,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
March 1995, The Journal of membrane biology,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
January 1978, Acta biologica et medica Germanica,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
May 1996, Experimental physiology,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
January 1986, Deutsche Zeitschrift fur Verdauungs- und Stoffwechselkrankheiten,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
January 1981, Calcified tissue international,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
November 1977, Journal of neurochemistry,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
January 1993, Methods in molecular biology (Clifton, N.J.),
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
May 1990, The American journal of physiology,
F Thévenod, and T P Kemmer, and A L Christian, and I Schulz
April 1988, Journal of neurochemistry,
Copied contents to your clipboard!