Antiviral strategies against influenza virus: towards new therapeutic approaches. 2014

Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121, Padua, Italy, arianna.loregian@unipd.it.

Influenza viruses are major human pathogens responsible for respiratory diseases affecting millions of people worldwide and characterized by high morbidity and significant mortality. Influenza infections can be controlled by vaccination and antiviral drugs. However, vaccines need annual updating and give limited protection. Only two classes of drugs are currently approved for the treatment of influenza: M2 ion channel blockers and neuraminidase inhibitors. However, they are often associated with limited efficacy and adverse side effects. In addition, the currently available drugs suffer from rapid and extensive emergence of drug resistance. All this highlights the urgent need for developing new antiviral strategies with novel mechanisms of action and with reduced drug resistance potential. Several new classes of antiviral agents targeting viral replication mechanisms or cellular proteins/processes are under development. This review gives an overview of novel strategies targeting the virus and/or the host cell for counteracting influenza virus infection.

UI MeSH Term Description Entries
D007251 Influenza, Human An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia. Grippe,Human Flu,Human Influenza,Influenza in Humans,Influenza,Flu, Human,Human Influenzas,Influenza in Human,Influenzas,Influenzas, Human
D009439 Neuraminidase An enzyme that catalyzes the hydrolysis of alpha-2,3, alpha-2,6-, and alpha-2,8-glycosidic linkages (at a decreasing rate, respectively) of terminal sialic residues in oligosaccharides, glycoproteins, glycolipids, colominic acid, and synthetic substrate. (From Enzyme Nomenclature, 1992) Sialidase,Exo-alpha-Sialidase,N-Acylneuraminate Glycohydrolases,Oligosaccharide Sialidase,Exo alpha Sialidase,Glycohydrolases, N-Acylneuraminate,N Acylneuraminate Glycohydrolases,Sialidase, Oligosaccharide
D009975 Orthomyxoviridae A family of RNA viruses causing INFLUENZA and other respiratory diseases. Orthomyxoviridae includes INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; INFLUENZAVIRUS D; ISAVIRUS; and THOGOTOVIRUS. Influenza Viruses,Myxoviruses,Orthomyxoviruses,Influenza Virus,Myxovirus,Orthomyxovirus
D006388 Hemagglutinins Agents that cause agglutination of red blood cells. They include antibodies, blood group antigens, lectins, autoimmune factors, bacterial, viral, or parasitic blood agglutinins, etc. Isohemagglutinins,Exohemagglutinins,Hemagglutinin
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D014758 Viral Core Proteins Proteins found mainly in icosahedral DNA and RNA viruses. They consist of proteins directly associated with the nucleic acid inside the NUCLEOCAPSID. Core Proteins, Viral,Major Core Protein,Major Core Proteins, Viral,Adenovirus Core Protein VII,Core Protein V,Core Protein lambda 2,Influenza Virus Core Proteins,Major Core Protein lambda 1,Major Core Protein lambda-1,Major Core Protein sigma 2,Major Core Protein sigma-2,OVP 19,Oncornaviral Protein P19,P30 Core Proteins,Viral Protein P19,Virus Core Proteins,Core Protein, Major,Core Proteins, P30,Core Proteins, Virus,Protein P19, Oncornaviral,Protein P19, Viral,Protein, Major Core,Proteins, P30 Core,Proteins, Viral Core,Proteins, Virus Core
D014763 Viral Matrix Proteins Proteins associated with the inner surface of the lipid bilayer of the viral envelope. These proteins have been implicated in control of viral transcription and may possibly serve as the "glue" that binds the nucleocapsid to the appropriate membrane site during viral budding from the host cell. Membrane Proteins, Viral,Viral M Proteins,Viral M Protein,Viral Membrane Proteins
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications

Related Publications

Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
March 2023, Clinical microbiology reviews,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
January 2007, Current pharmaceutical design,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
January 2016, Methods in molecular biology (Clifton, N.J.),
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
January 2011, Bioinformation,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
February 2023, Virus genes,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
March 2006, The Journal of infectious diseases,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
August 1973, The Tohoku journal of experimental medicine,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
November 2017, Scientific reports,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
December 2019, Viruses,
Arianna Loregian, and Beatrice Mercorelli, and Giulio Nannetti, and Chiara Compagnin, and Giorgio Palù
December 2012, Antiviral research,
Copied contents to your clipboard!