The Madin Darby canine kidney (MDCK) epithelial cell monolayer as a model cellular transport barrier. 1989

M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
Pharmaceutical Research and Development Division, Upjohn Company, Kalamazoo, Michigan 49001.

Two strains of Madin Darby canine kidney (MDCK) cells were grown on a polycarbonate membrane with 3-micron pores without any extracellular matrix treatment. The membrane, 2.45 cm in diameter, which is part of a commercially obtained presterilized culture insert, provides two chambers when placed in a regular six-well culture plate. This device was found to be convenient for investigating transport of a few selected fluid-phase markers across the MDCK cell monolayer. Both the strain from the American Type Culture Collection (ATCC) and the so-called highly resistant strain I, at a serial passage between 65 and 70, showed a seeding concentration-dependent lag phase followed by a growth phase with a 21-hr doubling time. When seeded at 5 x 10(4) cells/cm2, cell confluence was achieved in 5 days in a modified Eagle's minimum essential medium (MEM) containing 10% fetal bovine serum under a 5% CO2 atmosphere. Similarly, transepithelial electrical resistance (TEER) also reached a plateau value in 5 days. Both light and electron microscopic examinations revealed well-defined junctional structures. Transport of the fluid-phase markers, sucrose, lucifer yellow CH (LY), inulin, and dextran across the MDCK cell monolayers was studied primarily at 37 degrees C following the apical-to-basolateral as well as the basolateral-to-apical direction. Large variations in the steady-state transport rate were observed for a given marker between the cell layer preparations. Thus, the present study proposes an "internal standard" procedure for meaningful comparisons of the transport rate. When normalized to the rate of sucrose, the rate ratio was 1.00:0.80:0.67:0.15 for sucrose:LY:inulin:dextran.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007444 Inulin A starch found in the tubers and roots of many plants. Since it is hydrolyzable to FRUCTOSE, it is classified as a fructosan. It has been used in physiologic investigation for determination of the rate of glomerular function.
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
October 2014, Molecular pharmaceutics,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
July 1988, The Journal of cell biology,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
November 1984, The EMBO journal,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
February 1981, Journal of cellular physiology,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
February 2006, Cell biology international,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
August 1992, Kidney international,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
April 1990, Pharmaceutical research,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
January 1999, Developments in biological standardization,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
July 1979, Proceedings of the National Academy of Sciences of the United States of America,
M J Cho, and D P Thompson, and C T Cramer, and T J Vidmar, and J F Scieszka
February 2003, Cellular and molecular biology (Noisy-le-Grand, France),
Copied contents to your clipboard!