A deletion in chromosome 6q is associated with human abdominal aortic aneurysm. 2014

Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
*The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia.

Current efforts to identify the genetic contribution to abdominal aortic aneurysm (AAA) have mainly focused on the assessment of germ-line variants such as single-nucleotide polymorphisms. The aim of the present study was to assess the presence of acquired chromosomal aberrations in human AAA. Microarray data of ten biopsies obtained from the site of main AAA dilatation (AAA body) and three control biopsies obtained from the macroscopically non-dilated neck of the AAA (AAA neck) were initially compared with identified chromosomal aneuploidies using the Chromosomal Aberration Region Miner (ChARM) software. A commonly deleted segment of chromosome bands 6 (q22.1-23.2) was predicted within AAA biopsies. This finding was confirmed by quantitative real-time PCR (qPCR)-based DNA copy number assessments of an independent set of six AAA body and neck biopsies which identified a fold copy number change (∆KCt) of -1±0.35, suggesting the loss of one copy of the long interspersed nucleotide element type 1 (LINE-1) mapped to chromosome 6 (q22.1-23.2). The median relative genomic content of LINE-1 DNA was also reduced in AAA body compared with AAA neck biopsies (1.540 compared with 3.159; P=0.031). A gene important for vascular homoeostasis mapped to 6q23.1, connective tissue growth factor (CTGF), was assessed and found to be significantly down-regulated within AAA bodies compared with AAA necks (0.261 compared with 0.627; P=0.031), as determined by reverse transcription qPCR using total RNA as a template. Histology demonstrated marked staining for macrophages within AAA body biopsies. We found in vitro that the median relative genomic content of LINE-1 DNA in aortic vascular smooth muscle cells (AoSMCs) exposed to pro-inflammatory medium was ~1.5 times greater than that measured in control AoSMCs exposed to non-conditioned medium (3.044 compared with 2.040; P=0.015). Our findings suggest that acquired chromosomal aberrations associated with retrotransposon propagation may predispose to sporadic AAA.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002896 Chromosomes, Human, Pair 6 A specific pair GROUP C CHROMSOMES of the human chromosome classification. Chromosome 6
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000782 Aneuploidy The chromosomal constitution of cells which deviate from the normal by the addition or subtraction of CHROMOSOMES, chromosome pairs, or chromosome fragments. In a normally diploid cell (DIPLOIDY) the loss of a chromosome pair is termed nullisomy (symbol: 2N-2), the loss of a single chromosome is MONOSOMY (symbol: 2N-1), the addition of a chromosome pair is tetrasomy (symbol: 2N+2), the addition of a single chromosome is TRISOMY (symbol: 2N+1). Aneuploid,Aneuploid Cell,Aneuploid Cells,Aneuploidies,Aneuploids,Cell, Aneuploid,Cells, Aneuploid
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D017384 Sequence Deletion Deletion of sequences of nucleic acids from the genetic material of an individual. Deletion Mutation,Deletion Mutations,Deletion, Sequence,Deletions, Sequence,Mutation, Deletion,Mutations, Deletion,Sequence Deletions
D017544 Aortic Aneurysm, Abdominal An abnormal balloon- or sac-like dilatation in the wall of the ABDOMINAL AORTA which gives rise to the visceral, the parietal, and the terminal (iliac) branches below the aortic hiatus at the diaphragm. Abdominal Aorta Aneurysm,Aneurysm, Abdominal Aorta,Abdominal Aortic Aneurysm,Aneurysm, Abdominal Aortic,Abdominal Aorta Aneurysms,Abdominal Aortic Aneurysms,Aorta Aneurysm, Abdominal
D056915 DNA Copy Number Variations Stretches of genomic DNA that exist in different multiples between individuals. Many copy number variations have been associated with susceptibility or resistance to disease. Copy Number Polymorphism,DNA Copy Number Variant,Copy Number Changes, DNA,Copy Number Polymorphisms,Copy Number Variants, DNA,Copy Number Variation, DNA,DNA Copy Number Change,DNA Copy Number Changes,DNA Copy Number Polymorphism,DNA Copy Number Polymorphisms,DNA Copy Number Variants,DNA Copy Number Variation,Polymorphism, Copy Number,Polymorphisms, Copy Number
D060888 Real-Time Polymerase Chain Reaction Methods used for detecting the amplified DNA products from the polymerase chain reaction as they accumulate instead of at the end of the reaction. Kinetic Polymerase Chain Reaction,Quantitative Real-Time PCR,Quantitative Real-Time Polymerase Chain Reaction,Real-Time PCR,PCR, Quantitative Real-Time,PCR, Real-Time,PCRs, Quantitative Real-Time,PCRs, Real-Time,Quantitative Real Time PCR,Quantitative Real Time Polymerase Chain Reaction,Quantitative Real-Time PCRs,Real Time PCR,Real Time Polymerase Chain Reaction,Real-Time PCR, Quantitative,Real-Time PCRs,Real-Time PCRs, Quantitative
D020411 Oligonucleotide Array Sequence Analysis Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING. DNA Microarrays,Gene Expression Microarray Analysis,Oligonucleotide Arrays,cDNA Microarrays,DNA Arrays,DNA Chips,DNA Microchips,Gene Chips,Oligodeoxyribonucleotide Array Sequence Analysis,Oligonucleotide Microarrays,Sequence Analysis, Oligonucleotide Array,cDNA Arrays,Array, DNA,Array, Oligonucleotide,Array, cDNA,Arrays, DNA,Arrays, Oligonucleotide,Arrays, cDNA,Chip, DNA,Chip, Gene,Chips, DNA,Chips, Gene,DNA Array,DNA Chip,DNA Microarray,DNA Microchip,Gene Chip,Microarray, DNA,Microarray, Oligonucleotide,Microarray, cDNA,Microarrays, DNA,Microarrays, Oligonucleotide,Microarrays, cDNA,Microchip, DNA,Microchips, DNA,Oligonucleotide Array,Oligonucleotide Microarray,cDNA Array,cDNA Microarray

Related Publications

Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
January 1990, Clinical science (London, England : 1979),
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
June 2008, Pediatrics and neonatology,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
October 2013, Circulation. Cardiovascular genetics,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
August 2021, Journal of neurointerventional surgery,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
June 2012, Arteriosclerosis, thrombosis, and vascular biology,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
January 1991, American journal of medical genetics,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
June 1986, Ugeskrift for laeger,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
December 1966, Southern medical journal,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
December 1974, Archives of internal medicine,
Erik Biros, and Corey S Moran, and Philip J Walker, and John Cardinal, and Jonathan Golledge
September 2005, Anadolu kardiyoloji dergisi : AKD = the Anatolian journal of cardiology,
Copied contents to your clipboard!