Dimebon, an antihistamine drug, inhibits glutamate release in rat cerebrocortical nerve terminals. 2014

Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.

The excessive release of glutamate is a critical element in the neuropathology of acute and chronic brain disorders. The purpose of the present study was to investigate the effect and possible mechanism of dimebon, an antihistamine with a neuroprotective profile, on endogenous glutamate release in the nerve terminals (synaptosomes) of the rat cerebral cortex. Dimebon inhibited the release of glutamate that was evoked by exposing the synaptosomes to the K(+) channel blocker 4-aminopyridine, and this effect was prevented by chelating extracellular Ca(2+) ions, and the vesicular transporter inhibitor bafilomycin A1. Dimebon inhibited depolarization-evoked increase in cytosolic free Ca(2+) concentration, and the dimebon-mediated inhibition of glutamate release was prevented by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC. The inhibitory action of dimebon on glutamate release was not due to its decreasing synaptosomal excitability, because dimebon did not alter the resting synaptosomal membrane potential or 4-aminopyridine-mediated depolarization. Furthemore, the dimebon effect on 4-aminopyridine-evoked glutamate release was prevented by the protein kinase C inhibitor, and dimebon substantially reduced the 4-AP-induced phosphorylation of protein kinase C. However, the dimebon-mediated inhibition of glutamate release was unaffected by the N-methyl-d-aspartate receptor agonist or antagonist. These results suggest that dimebon inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic voltage-dependent Ca(2+) entry and protein kinase C activity. This implies that the inhibition of glutamate release is an additional pharmacological activity of dimebon that may play a critical role in the apparent clinical efficacy of this compound.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D006633 Histamine Antagonists Drugs that bind to but do not activate histamine receptors, thereby blocking the actions of histamine or histamine agonists. Classical antihistaminics block the histamine H1 receptors only. Antihistamine,Antihistamines,Histamine Antagonist,Antagonist, Histamine,Antagonists, Histamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome

Related Publications

Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
March 2015, International journal of molecular sciences,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
August 2008, Neuroreport,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
March 2019, Synapse (New York, N.Y.),
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
May 2015, Journal of medicinal food,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
September 2012, Toxicology and applied pharmacology,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
August 2011, Journal of agricultural and food chemistry,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
May 2013, Journal of ethnopharmacology,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
June 2017, Neuroreport,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
February 2009, Neurochemistry international,
Che-Chuan Wang, and Jinn-Rung Kuo, and Su-Jane Wang
January 1994, The European journal of neuroscience,
Copied contents to your clipboard!