Preganglionic and sensory origins of calcitonin gene-related peptide-like and substance P-like immunoreactivities in bullfrog sympathetic ganglia. 1989

J P Horn, and W D Stofer
Department of Physiology, University of Pittsburgh School of Medicine, Pennsylvania 15261.

These experiments further define the organization of peptidergic pathways in the paravertebral sympathetic system of the bullfrog. Populations of axons and synaptic boutons in sympathetic ganglia 9 and 10 were found to express calcitonin gene-related peptide-like immunoreactivity (CGRP-IR) and substance P-like immunoreactivity (SP-IR). CGRP-IR is present in fibers that run through the ganglia and in boutons that make contact with almost half of the principal neurons. SP-IR is also present in fibers within the ganglia and in a rare class of synaptic boutons that are found on less than 1% of the principal neurons. Both forms of immunoreactivity are coexpressed in some nerve fibers and in the rare synaptic boutons that contain SP-IR. Neuropeptide Y-like immunoreactivity (NPY-IR), a marker for C-type postganglionic neurons, was used to identify the postsynaptic targets of boutons containing CGRP-IR and SP-IR. Ninety-five percent of the ganglion cells contacted by CGRP-IR boutons were negative for NPY-IR and are therefore likely to be B-type postganglionic neurons. Similarly, 100% of the ganglion cells contacted by boutons containing SP-IR were negative for NPY-IR. Lesions of the sympathetic chain demonstrated that synaptic boutons containing CGRP-IR arise from neurons whose axons enter the chain rostral to ganglion 7. Cutting the chain between ganglia 8 and 9 eliminates all preganglionic B and C inputs to ganglia 9 and 10. The destruction of the preganglionic C pathway by this lesion was verified by staining ganglia 9 and 10 for luteinizing hormone releasing hormone (LHRH). This lesion also eliminated boutons containing CGRP-IR and drastically reduced the number of ganglionic fibers that stained for CGRP-IR and SP-IR. By contrast, cutting the sympathetic chain between ganglia 6 and 7 spared LHRH-IR in the preganglionic C pathway but still eliminated the boutons that normally express CGRP-IR and reduced the amount of staining for SP-IR. CGRP-IR in the sympathetic ganglia arises from preganglionic and sensory neurons whereas ganglionic SP-IR is purely sensory in origin. In the spinal cord, the preganglionic B and C neurons that innervate ganglia 9 and 10 are located in different segments. In segments that contain preganglionic B cells, but not those that contain C cells, there were 243 +/- 37 (mean +/- SD) neurons in the intermediolateral cell column that express CGRP-IR. However, no cell bodies containing SP-IR were found in this region of the spinal cord.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D002116 Calcitonin A peptide hormone that lowers calcium concentration in the blood. In humans, it is released by thyroid cells and acts to decrease the formation and absorptive activity of osteoclasts. Its role in regulating plasma calcium is much greater in children and in certain diseases than in normal adults. Thyrocalcitonin,Calcitonin(1-32),Calcitrin,Ciba 47175-BA,Eel Calcitonin,Calcitonin, Eel,Ciba 47175 BA,Ciba 47175BA
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D005260 Female Females
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion

Related Publications

Copied contents to your clipboard!