Abnormal development and dye coupling produced by antisense RNA to gap junction protein in mouse preimplantation embryos. 1989

A Bevilacqua, and R Loch-Caruso, and R P Erickson
Department of Human Genetics, School of Medicine, University of Michigan, Ann Arbor 48109.

Antisense RNA to the 27/32-kDa rat liver gap junction (GJ) protein was used to explore the role of GJs in preimplantation embryos. When all blastomeres of two- and four-cell embryos were injected with GJ antisense RNA, the percentage of embryos compacted at 60 hr of development was reduced to less than 20%, while 90% of uninjected embryos and 75% of embryos injected with an unrelated RNA were compacted. When most cells of compacted eight-cell embryos were injected with the GJ antisense RNA, 20% of the embryos were decompacted and only 5% had developed to the blastocyst stage at 90 hr, when blastulation had occurred in 90% of the control embryos. When antisense RNA was injected in one blastomere of four-cell embryos, 40% of the embryos presented a large cell that was not included in the compacted embryo at the time of compaction, and an additional 30% of the embryos had two smaller, excluded blastomeres. These excluded cells were identified as the injected cell with a rhodamine-conjugated dextran marker. To assess effects on junctional communication, one blastomere of some embryos was injected with Lucifer yellow, a GJ-penetrating dye, at various times after a blastomere was injected with antisense RNA. The dye was visible in the whole cell mass of control embryos, but it was excluded from a portion of experimental embryos when the delay between the RNA and the Lucifer yellow injections was 1 hr or longer.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008845 Microinjections The injection of very small amounts of fluid, often with the aid of a microscope and microsyringes. Microinjection
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012235 Rhodamines A family of 3,6-di(substituted-amino)-9-benzoate derivatives of xanthene that are used as dyes and as indicators for various metals; also used as fluorescent tracers in histochemistry. Rhodamine

Related Publications

A Bevilacqua, and R Loch-Caruso, and R P Erickson
August 1997, Journal of cell science,
A Bevilacqua, and R Loch-Caruso, and R P Erickson
April 1995, Journal of cell science,
A Bevilacqua, and R Loch-Caruso, and R P Erickson
April 2000, Molecular reproduction and development,
A Bevilacqua, and R Loch-Caruso, and R P Erickson
April 1993, Development (Cambridge, England),
A Bevilacqua, and R Loch-Caruso, and R P Erickson
August 2010, The Journal of pharmacy and pharmacology,
A Bevilacqua, and R Loch-Caruso, and R P Erickson
May 1986, Journal of reproduction and fertility,
A Bevilacqua, and R Loch-Caruso, and R P Erickson
February 1988, Proceedings of the National Academy of Sciences of the United States of America,
A Bevilacqua, and R Loch-Caruso, and R P Erickson
January 1989, Developmental genetics,
A Bevilacqua, and R Loch-Caruso, and R P Erickson
January 1986, Progress in clinical and biological research,
Copied contents to your clipboard!