| D011485 |
Protein Binding |
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. |
Plasma Protein Binding Capacity,Binding, Protein |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000075702 |
Nedd4 Ubiquitin Protein Ligases |
E3 ubiquitin ligases that consist of four WW DOMAINS. They accept UBIQUITIN from E2 UBIQUITIN-CONJUGATING ENZYME as a thioester via their C-terminal HECT domains and transfer it specifically to the 63rd LYSINE residue (Lys-63) of target proteins. NEDD4 targets include many proteins and receptors with important functions for cell growth and homeostasis such as VEGFR-2; FGFR1 TYROSINE KINASE; and ERBB-4 RECEPTOR. They play a critical role in the internalization of these receptors, their degradation by LYSOSOMES, and also function as part of the ESCRT complex in VIRUS RELEASE. |
Nedd4 Proteins,Neuronal Precursor Cell-Expressed Developmentally Down-Regulated 4 Ligase,Neuronal Precursor Cell Expressed Developmentally Down Regulated 4 Ligase |
|
| D000200 |
Action Potentials |
Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. |
Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D012964 |
Sodium |
A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. |
Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23 |
|
| D015398 |
Signal Transduction |
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. |
Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal |
|
| D015640 |
Ion Channel Gating |
The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. |
Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings |
|
| D044767 |
Ubiquitin-Protein Ligases |
A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes. |
Ubiquitin-Protein Ligase,E3 Ligase,E3 Ubiquitin Ligase,Ubiquitin Ligase E3,Ubiquitin-Protein Ligase E3,Ligase E3, Ubiquitin,Ligase E3, Ubiquitin-Protein,Ligase, E3,Ligase, E3 Ubiquitin,Ligase, Ubiquitin-Protein,Ligases, Ubiquitin-Protein,Ubiquitin Ligase, E3,Ubiquitin Protein Ligase,Ubiquitin Protein Ligase E3,Ubiquitin Protein Ligases |
|
| D053503 |
Epithelial Sodium Channels |
Sodium channels found on salt-reabsorbing EPITHELIAL CELLS that line the distal NEPHRON; the distal COLON; SALIVARY DUCTS; SWEAT GLANDS; and the LUNG. They are AMILORIDE-sensitive and play a critical role in the control of sodium balance, BLOOD VOLUME, and BLOOD PRESSURE. |
Epithelial Sodium Channel,Epithelial Sodium Ion Channels,ENaC (Epithelial Na+ Channel),ENaC alpha,ENaC beta,ENaC delta,ENaC gamma,Epithelial Amiloride-Sensitive Sodium Channel,Epithelial Sodium Channel, alpha Subunit,Epithelial Sodium Channel, beta Subunit,Epithelial Sodium Channel, delta Subunit,Epithelial Sodium Channel, gamma Subunit,SCNN1 alpha Subunit,SCNN1 beta Subunit,SCNN1 delta Subunit,SCNN1 gamma Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, alpha Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, beta Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, delta Subunit,Sodium Channel, Nonvoltage-gated 1 Protein, gamma Subunit,Epithelial Amiloride Sensitive Sodium Channel,Sodium Channel, Epithelial,Sodium Channels, Epithelial,alpha Subunit, SCNN1 |
|