Insulin enhances luteinizing hormone-stimulated steroidogenesis by porcine theca cells. 1989

P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
Department of Physiology, University of Western Ontario, London, Canada.

It has been shown recently that insulin enhances differentiation of rat, pig, and human granulosa cells. The present studies were done to determine if insulin also plays a role in the regulation of theca cell steroidogenesis. Theca cells were obtained from prepubertal gilts and cultured under serum-free conditions for 48 h. Theca cell androstenedione production under basal and luteinizing hormone (LH)-stimulated conditions was significantly increased by adding insulin (1 microgram/ml) to the culture medium. Treatment of basal and LH-stimulated cultures with increasing concentrations of insulin (0.001-10 micrograms/ml) caused dose- and time-dependent increments in androstenedione production, but the effect was independent of the dose of LH employed. The ability of insulin to enhance thecal cell androstenedione production was mimicked by somatomedin C, but not by relaxin. Studies to determine the mechanism(s) of action of insulin showed that insulin action is exerted, at least in part, at a site(s) proximal to cyclic adenosine 3'5'-monophosphate (cAMP) generation, since insulin enhanced both basal and LH-stimulated accumulation of extracellular cAMP in addition to increasing androstenedione production. This effect was further enhanced by 3-isobutyl-1-methyl xanthine, an inhibitor of phosphodiesterase activity. Insulin treatment also caused dose-dependent increments in forskolin- and prostaglandin E2-stimulated accumulation of extracellular cAMP and androstenedione. Insulin also increased both the basal and LH-stimulated production of progesterone and its precursor pregnenolone, in addition to the increases in androstenedione.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D011284 Pregnenolone A 21-carbon steroid, derived from CHOLESTEROL and found in steroid hormone-producing tissues. Pregnenolone is the precursor to GONADAL STEROID HORMONES and the adrenal CORTICOSTEROIDS. 5-Pregnen-3-beta-ol-20-one,5 Pregnen 3 beta ol 20 one
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D012065 Relaxin A water-soluble polypeptide (molecular weight approximately 8,000) extractable from the corpus luteum of pregnancy. It produces relaxation of the pubic symphysis and dilation of the uterine cervix in certain animal species. Its role in the human pregnant female is uncertain. (Dorland, 28th ed) Relaxin B
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477

Related Publications

P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
May 1984, Molecular and cellular endocrinology,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
August 1990, The Journal of clinical investigation,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
January 2020, Theriogenology,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
August 1983, Fertility and sterility,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
September 2003, Animal reproduction science,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
July 1989, Endocrinology,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
March 2002, Animal reproduction science,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
July 1990, FEBS letters,
P Morley, and F R Calaresu, and G J Barbe, and D T Armstrong
June 2010, Prostaglandins & other lipid mediators,
Copied contents to your clipboard!