Kainate receptors in the hippocampus. 2014

Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, University of Bordeaux, F-33000, Bordeaux, France.

Kainate receptors (KARs) consist of a family of ionotropic glutamate receptors composed of the combinations of five subunits, GluK1-GluK5. Although KARs display close structural homology with AMPA receptors, they serve quite distinct functions. A great deal of our knowledge of the molecular and functional properties of KARs comes from their study in the hippocampus. This review aims at summarising the functions of KARs in the regulation of the activity of hippocampal synaptic circuits at the adult stage and throughout development. We focus on the variety of roles played by KARs in physiological conditions of activation, at pre- and postsynaptic sites, in different cell types and through either metabotropic or ionotropic actions. Finally, we present some of the few attempts to link the role of KARs in the regulation of local hippocampal circuits to the behavioural functions of the hippocampus in health and diseases.

UI MeSH Term Description Entries
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D018092 Receptors, Kainic Acid A class of ionotropic glutamate receptors characterized by their affinity for KAINIC ACID. Kainate Receptors,Kainic Acid Receptors,Receptors, Kainate,Kainate Receptor,Kainic Acid Receptor,Receptor, Kainate,Receptor, Kainic Acid

Related Publications

Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
February 2023, Neural regeneration research,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
November 2001, Neuron,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
October 1997, Neuron,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
January 1996, Nature,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
March 2010, Progress in neuro-psychopharmacology & biological psychiatry,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
June 2002, Brain research. Developmental brain research,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
August 1999, Molecular pharmacology,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
January 2011, Advances in experimental medicine and biology,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
January 2003, Revista de neurologia,
Mario Carta, and Sabine Fièvre, and Adam Gorlewicz, and Christophe Mulle
January 2006, Revista de neurologia,
Copied contents to your clipboard!