The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties. 2014

Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.

Tick-borne encephalitis virus (TBEV) is transmitted to vertebrates by taiga or forest ticks through bites, inducing disease of variable severity. The reasons underlying these differences in the severity of the disease are unknown. In order to identify genetic factors affecting the pathogenicity of virus strains, we have sequenced and compared the complete genomes of 34 Far-Eastern subtype (FE) TBEV strains isolated from patients with different disease severity (Primorye, the Russian Far East). We analyzed the complete genomes of 11 human pathogenic strains isolated from the brains of dead patients with the encephalitic form of the disease (Efd), 4 strains from the blood of patients with the febrile form of TBE (Ffd), and 19 strains from patients with the subclinical form of TBE (Sfd). On the phylogenetic tree, pathogenic Efd strains formed two clusters containing the prototype strains, Senzhang and Sofjin, respectively. Sfd strains formed a third separate cluster, including the Oshima strain. The strains that caused the febrile form of the disease did not form a separate cluster. In the viral proteins, we found 198 positions with at least one amino acid residue substitution, of which only 17 amino acid residue substitutions were correlated with the variable pathogenicity of these strains in humans and they authentically differed between the groups. We considered the role of each amino acid substitution and assumed that the deletion of 111 amino acids in the capsid protein in combination with the amino acid substitutions R16K and S45F in the NS3 protease may affect the budding process of viral particles. These changes may be the major reason for the diminished pathogenicity of TBEV strains. We recommend Sfd strains for testing as attenuation vaccine candidates.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002681 China A country spanning from central Asia to the Pacific Ocean. Inner Mongolia,Manchuria,People's Republic of China,Sinkiang,Mainland China
D004669 Encephalitis Viruses, Tick-Borne A subgroup of the genus FLAVIVIRUS that causes encephalitis and hemorrhagic fevers and is found in eastern and western Europe and the former Soviet Union. It is transmitted by TICKS and there is an associated milk-borne transmission from viremic cattle, goats, and sheep. Hemorrhagic Fever Virus, Omsk,Kyasanur Forest disease virus,Langat virus,Louping ill virus,Omsk hemorrhagic fever virus,Powassan virus,Al-Khurma Hemorrhagic Fever Virus,Al-Khurma virus,Al-Khurma virus (ALKV),Alkhurma Hemorrhagic Fever Virus,Alkhurma virus,Alkhurma virus (ALKV),Encephalitis Virus, Tick-Borne,Tick-Borne Encephalitis Virus,Tick-Borne Encephalitis Viruses,Viruses, Tick-Borne Encephalitis,Al Khurma Hemorrhagic Fever Virus,Al Khurma virus,Al Khurma virus (ALKV),Encephalitis Virus, Tick Borne,Encephalitis Viruses, Tick Borne,Louping ill viruses,Tick Borne Encephalitis Virus,Tick Borne Encephalitis Viruses
D004675 Encephalitis, Tick-Borne Encephalitis caused by neurotropic viruses that are transmitted via the bite of TICKS. In Europe, the diseases are caused by ENCEPHALITIS VIRUSES, TICK-BORNE, which give rise to Russian spring-summer encephalitis, central European encephalitis, louping ill encephalitis, and related disorders. Powassan encephalitis occurs in North America and Russia and is caused by the Powassan virus. ASEPTIC MENINGITIS and rarely encephalitis may complicate COLORADO TICK FEVER which is endemic to mountainous regions of the western United States. (From Joynt, Clinical Neurology, 1996, Ch26, pp14-5) Far Eastern Russian Encephalitis,Powassan Encephalitis,Central European Encephalitis,Encephalitis, Central European,Encephalitis, European Tick-Borne,Encephalitis, Far Eastern Russian,Encephalitis, Louping Ill,Encephalitis, Russian Spring-Summer,European Tick-Borne Encephalitis,Louping Ill Encephalitis,Powassan Virus Disease,Russian Spring-Summer Encephalitis,Tick-Borne Encephalitis,Disease, Powassan Virus,Encephalitis, European Tick Borne,Encephalitis, Powassan,Encephalitis, Russian Spring Summer,Encephalitis, Tick Borne,European Tick Borne Encephalitis,Powassan Encephalitides,Powassan Virus Diseases,Russian Spring Summer Encephalitis,Spring-Summer Encephalitis, Russian,Tick Borne Encephalitis,Tick-Borne Encephalitis, European,Virus Disease, Powassan,Virus Diseases, Powassan
D005843 Geography The science dealing with the earth and its life, especially the description of land, sea, and air and the distribution of plant and animal life, including humanity and human industries with reference to the mutual relations of these elements. (From Webster, 3d ed) Factor, Geographic,Factors, Geographic,Geographic Factor,Geographic Factors,Geography, Human,Human Geography
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
January 1967, Voprosy virusologii,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
January 1974, Archiv fur die gesamte Virusforschung,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
January 1971, Voprosy virusologii,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
December 1993, Virus research,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
August 2019, Bulletin of experimental biology and medicine,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
September 2000, Virus research,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
January 2012, Voprosy virusologii,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
January 1985, Przeglad epidemiologiczny,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
March 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,
Sergei I Belikov, and Ilya G Kondratov, and Ulyana V Potapova, and Galina N Leonova
May 2022, Journal of medical microbiology,
Copied contents to your clipboard!