Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression. 2014

Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
Hsin-Chen Lee, Chin-Wen Chi, Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.

Energy metabolism reprogramming was recently identified as one of the cancer hallmarks. One of the underlying mechanisms of energy metabolism reprogramming is mitochondrial dysfunction caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the past decades, several types of somatic mtDNA alterations have been identified in gastric cancer. However, the role of these mtDNA alterations in gastric cancer progression remains unclear. In this review, we summarize recently identified somatic mtDNA alterations in gastric cancers as well as the relationship between these alterations and the clinicopathological features of gastric cancer. The causative factors and potential roles of the somatic mtDNA alterations in cancer progression are also discussed. We suggest that point mutations and mtDNA copy number decreases are the two most common mtDNA alterations that result in mitochondrial dysfunction in gastric cancers. The two primary mutation types (transition mutations and mononucleotide or dinucleotide repeat instability) imply potential causative factors. Mitochondrial dysfunction-generated reactive oxygen species may be involved in the malignant changes of gastric cancer. The search for strategies to prevent mtDNA alterations and inhibit the mitochondrial retrograde signaling will benefit the development of novel treatments for gastric cancer and other malignancies.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs
D013274 Stomach Neoplasms Tumors or cancer of the STOMACH. Cancer of Stomach,Gastric Cancer,Gastric Neoplasms,Stomach Cancer,Cancer of the Stomach,Gastric Cancer, Familial Diffuse,Neoplasms, Gastric,Neoplasms, Stomach,Cancer, Gastric,Cancer, Stomach,Cancers, Gastric,Cancers, Stomach,Gastric Cancers,Gastric Neoplasm,Neoplasm, Gastric,Neoplasm, Stomach,Stomach Cancers,Stomach Neoplasm
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017354 Point Mutation A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair. Mutation, Point,Mutations, Point,Point Mutations
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen

Related Publications

Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
December 2013, World journal of gastroenterology,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
November 2010, Ageing research reviews,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
February 2022, International journal of molecular sciences,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
January 2003, Oncology reports,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
October 1995, The American journal of pathology,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
January 2002, Cancer investigation,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
November 2014, World journal of gastroenterology,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
December 2014, Toxicological research,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
March 2010, Biochimica et biophysica acta,
Hsin-Chen Lee, and Kuo-Hung Huang, and Tien-Shun Yeh, and Chin-Wen Chi
May 2021, Scientific reports,
Copied contents to your clipboard!