An overview of the intrathymic intricacies of T cell development. 2014

Divya K Shah, and Juan Carlos Zúñiga-Pflücker
Anthony Nolan Research Institute, Royal Free Hospital, London NW3 2QG, United Kingdom.

The generation of a functional and diverse repertoire of T cells occurs in the thymus from precursors arriving from the bone marrow. In this article, we introduce the various stages of mouse thymocyte development and highlight recent work using various in vivo, and, where appropriate, in vitro models of T cell development that led to discoveries in the regulation afforded by transcription factors and receptor-ligand signaling pathways in specifying, maintaining, and promoting the T cell lineage and the production of T cells. This review also discusses the role of the thymic microenvironment in providing a niche for the successful development of T cells. In particular, we focus on advances in Notch signaling and developments in Notch ligand interactions in this process.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D013950 Thymus Gland A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat. Thymus,Gland, Thymus,Glands, Thymus,Thymus Glands
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Divya K Shah, and Juan Carlos Zúñiga-Pflücker
January 2021, Frontiers in cell and developmental biology,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
March 1994, Journal of immunology (Baltimore, Md. : 1950),
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
November 1994, International archives of allergy and immunology,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
December 2002, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
August 1993, Seminars in immunology,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
February 1994, Research in immunology,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
October 1991, Immunology,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
April 2024, International journal of molecular sciences,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
December 2011, Immune network,
Divya K Shah, and Juan Carlos Zúñiga-Pflücker
February 1994, Research in immunology,
Copied contents to your clipboard!