EF-hands calcium binding regulates the thioredoxin reductase/thioredoxin electron transfer in human keratinocytes. 1989

K U Schallreuter, and M R Pittelkow, and J M Wood
Department of Dermatology, University of Hamburg, FRG.

Thioredoxin reductases purified from Escherichia coli from human metastatic melanoma tissue and from human keratinocytes are subject to allosteric inhibition by calcium. 45Calcium has been used to show that this enzyme contains a single binding site. Bound calcium does not exchange from thioredoxin reductase upon dialysis for 48 hours or upon exposure to 10(-3) M EGTA. An intelligenetics computer analysis yielded a single EF-hands calcium binding site on E. coli thioredoxin reductase with homology to the first EF-hands site on calmodulin. Calcium exchange from the enzyme requires the addition of the natural electron acceptor oxidized thioredoxin which causes a concentration dependent slow exchange. Due to the large conformational change caused by calcium binding to thioredoxin reductase it has been possible to separate Calcium-free and Calcium-bound enzyme by FPLC chromatography. Human keratinocytes contain 5% thioredoxin reductase in their acidic protein cytosol fraction. The influence of extracellular calcium concentration on the intracellular equilibrium between calcium bound versus calcium free thioredoxin reductase has been assessed. This equilibrium was shown to determine the redox status of keratinocytes via the reduction of thioredoxin. Our results provide the first evidence for calcium dependent regulation of redox conditions in the human epidermis.

UI MeSH Term Description Entries
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial

Related Publications

K U Schallreuter, and M R Pittelkow, and J M Wood
August 1989, Biochimica et biophysica acta,
K U Schallreuter, and M R Pittelkow, and J M Wood
January 1995, Protein profile,
K U Schallreuter, and M R Pittelkow, and J M Wood
January 1994, Protein profile,
K U Schallreuter, and M R Pittelkow, and J M Wood
February 1991, Biochemistry,
K U Schallreuter, and M R Pittelkow, and J M Wood
April 2017, The Biochemical journal,
K U Schallreuter, and M R Pittelkow, and J M Wood
January 2004, Cellular & molecular biology letters,
K U Schallreuter, and M R Pittelkow, and J M Wood
July 2003, Trends in microbiology,
K U Schallreuter, and M R Pittelkow, and J M Wood
April 2003, FEMS microbiology letters,
K U Schallreuter, and M R Pittelkow, and J M Wood
September 1999, Biochemistry,
K U Schallreuter, and M R Pittelkow, and J M Wood
June 2003, Biochemical Society transactions,
Copied contents to your clipboard!