Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. 1989

A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
Molecular Parasitology Group, University of Oxford, UK.

The primary event in the pathogenesis of severe malaria in Plasmodium falciparum infection is thought to be adherence of trophozoite- and schizont-infected erythrocytes to capillary endothelium, a process called sequestration. Identifying the endothelial molecules used as receptors is an essential step in understanding this disease process. Recent work implicates the membrane glycoprotein CD36 (platelet glycoprotein IV; refs 2-5) and the multi-functional glycoprotein thrombospondin as receptors. Although CD36 has a widespread distribution on microvascular endothelium, it may not be expressed on all capillary beds where sequestration occurs, especially in the brain. The role of thrombospondin in cell adhesion, in vitro or in vivo, is less certain. We have noticed that some parasites bind to human umbilical-vein endothelial cells independently of CD36 or thrombospondin. To screen for alternative receptors, we have developed a novel cell-adhesion assay using transfected COS cells, which confirms that CD36 is a cell-adhesion receptor. In addition, we find that an endothelial-binding line of P. falciparum binds to COS cells transfected with a complementary DNA encoding intercellular adhesion molecule-1. As this molecule is widely distributed on capillaries and is inducible, this finding may be relevant to the pathogenesis of severe malaria.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D010980 Platelet Membrane Glycoproteins Surface glycoproteins on platelets which have a key role in hemostasis and thrombosis such as platelet adhesion and aggregation. Many of these are receptors. PM-GP,Platelet Glycoprotein,Platelet Membrane Glycoprotein,PM-GPs,Platelet Glycoproteins,Glycoprotein, Platelet,Glycoprotein, Platelet Membrane,Glycoproteins, Platelet,Glycoproteins, Platelet Membrane,Membrane Glycoprotein, Platelet,Membrane Glycoproteins, Platelet,PM GP
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
July 2002, Infection and immunity,
A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
July 2007, The Journal of infectious diseases,
A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
April 1996, Infection and immunity,
A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
December 1994, The Journal of biological chemistry,
A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
July 2001, Placenta,
A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
April 1996, Proceedings of the National Academy of Sciences of the United States of America,
A R Berendt, and D L Simmons, and J Tansey, and C I Newbold, and K Marsh
February 2004, Molecular microbiology,
Copied contents to your clipboard!