Effect of the barring gene on eye pigmentation in the fowl. 1989

R E Schreck, and R R Bowers
Department of Biology, California State University, Los Angeles 90032.

Pigment cells of the iris, pecten, retinal pigment epithelium, and choroid of the wild-type jungle fowl (JF) and the barred Plymouth rock (BPR) breeds of adult chickens were studied at both light and electron microscopic levels. BPR choroidal tissues had 2.8 times fewer melanophores than the JF choroid, and BPR melanophores also contained 2.4 times fewer melanosomes, which tended to clump together in variously sized clusters. The melanosomes were often irregular in shape, smaller in diameter, and less mature (stage III) than those granules in the JF. The retinal pigment epithelium of both JF and BPR breeds contained a single epithelial layer of columnar cells. Rod-shaped melanosomes were present in the more apical regions of this cell type in both breeds. Both JF and BPR irides contained a multilayered posterior pigmented epithelium of columnar shaped cells that were densely filled with large spherical granules. Intercellular spaces with interdigitating cytoplasmic projections were present between pigment cells of both breeds. The pecten melanophores of both breeds were dendritic with melanosomes that were larger and fewer in numbers than those pigment cells of the iris and choroid. Intercellular spaces were present between cells in both breeds, with numerous villous-like pigment cell extensions. Choroid melanophores contained very little, if any, acid phosphatase activity. Approximately one-half of the retinal pigment epithelial cells observed contained small amounts of diffuse acid phosphatase activity in both breeds. The iris and pecten melanophores of both breeds contained profuse acid phosphatase activity scattered throughout their cytoplasms. Sparse tyrosinase activity was seen in iris and pecten pigment cells, whereas no tyrosine activity was observed in choroid melanophores or in retinal pigment epithelial cells in the two breeds, indicating that little new melanogenesis occurs in adult pigmented eye tissues. The results show that the barring gene reduces the number and melanin content of the choroidal melanophores in homozygous male BPR chickens as compared to the wild-type JF chickens. Whether this gene prevents the initial migration of embryonic neural crest cells (future melanophores) to the choroid or whether some of the choroidal melanophores prematurely degenerate in the embryo of young birds is yet to be determined. If the latter is the case, this choroid system may serve as a model for a genetic hypomelanotic disease such as vitiligo.

UI MeSH Term Description Entries
D007498 Iris The most anterior portion of the uveal layer, separating the anterior chamber from the posterior. It consists of two layers - the stroma and the pigmented epithelium. Color of the iris depends on the amount of melanin in the stroma on reflection from the pigmented epithelium.
D008297 Male Males
D008547 Melanophores Chromatophores (large pigment cells of fish, amphibia, reptiles and many invertebrates) which contain melanin. Short term color changes are brought about by an active redistribution of the melanophores pigment containing organelles (MELANOSOMES). Mammals do not have melanophores; however they have retained smaller pigment cells known as MELANOCYTES. Melanophore
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010857 Pigment Epithelium of Eye The layer of pigment-containing epithelial cells in the RETINA; the CILIARY BODY; and the IRIS in the eye. Eye Pigment Epithelium
D010858 Pigmentation Coloration or discoloration of a part by a pigment. Pigmentations
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D002829 Choroid The thin, highly vascular membrane covering most of the posterior of the eye between the RETINA and SCLERA. Choriocapillaris,Haller Layer,Haller's Layer,Sattler Layer,Sattler's Layer,Choroids
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004295 Dihydroxyphenylalanine A beta-hydroxylated derivative of phenylalanine. The D-form of dihydroxyphenylalanine has less physiologic activity than the L-form and is commonly used experimentally to determine whether the pharmacological effects of LEVODOPA are stereospecific. Dopa,3,4-Dihydroxyphenylalanine,3-Hydroxy-DL-tyrosine,Dihydroxyphenylalanine Hydrochloride, (2:1),beta-Hydroxytyrosine,3 Hydroxy DL tyrosine,3,4 Dihydroxyphenylalanine,beta Hydroxytyrosine

Related Publications

R E Schreck, and R R Bowers
January 2008, Investigative ophthalmology & visual science,
R E Schreck, and R R Bowers
January 1948, Annals of the New York Academy of Sciences,
R E Schreck, and R R Bowers
November 1973, Poultry science,
R E Schreck, and R R Bowers
April 1917, Proceedings of the National Academy of Sciences of the United States of America,
R E Schreck, and R R Bowers
December 1998, British poultry science,
R E Schreck, and R R Bowers
December 1947, The Anatomical record,
R E Schreck, and R R Bowers
September 2009, Poultry science,
R E Schreck, and R R Bowers
December 2003, Seminars in cell & developmental biology,
Copied contents to your clipboard!