The role of complement in the pathogenesis of experimental allergic encephalomyelitis. 1989

C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
Department of Medicine, University of Wales College of Medicine, Cardiff, UK.

The role of complement in the pathogenesis of demyelination and inflammation has been investigated in a synergistic model of acute experimental allergic encephalomyelitis (EAE) in the Lewis rat. Depletion of serum complement with cobra venom factor (CVF) suppressed the clinical expression of acute inflammatory EAE induced either by immunization with 50 micrograms guinea pig basic protein (MBP) in Freund's complete adjuvant, or by the passive transfer of 10(7), but not 5 X 10(7) MBP activated spleen cells. Despite the suppression of clinical disease in actively induced EAE, treatment with CFF only had a significant effect on the severity of CNS inflammation in early disease (12 days postimmunization) when the number of inflammatory foci was reduced by 35%. Three days later this difference had resolved and no significant difference could be detected in the severity of CNS inflammation, although control animals exhibited severe disease, the CVF treated group being clinically normal. Demyelination in these models is initiated by systemic injection of the antimyelin oligodendrocyte glycoprotein (MOG) monoclonal antibody, 8-18C5, which in vitro lyses oligodendrocytes in a dose, Fc and complement-dependent manner and in vivo induces extensive CNS demyelination in rats with EAE. Treatment with CVF reduced the ability of this antibody to initiate demyelination in vivo and furthermore, its F(ab)2' fragment had no effect on the clinical course of EAE and was unable to initiate demyelination in normal animals. Complement-dependent mechanisms are therefore involved both in the clinical expression of acute inflammatory lesions and in the pathogenesis of antibody-mediated demyelination in EAE.

UI MeSH Term Description Entries
D007114 Immunization Deliberate stimulation of the host's immune response. ACTIVE IMMUNIZATION involves administration of ANTIGENS or IMMUNOLOGIC ADJUVANTS. PASSIVE IMMUNIZATION involves administration of IMMUNE SERA or LYMPHOCYTES or their extracts (e.g., transfer factor, immune RNA) or transplantation of immunocompetent cell producing tissue (thymus or bone marrow). Immunologic Stimulation,Immunostimulation,Sensitization, Immunologic,Variolation,Immunologic Sensitization,Immunological Stimulation,Sensitization, Immunological,Stimulation, Immunologic,Immunizations,Immunological Sensitization,Immunological Sensitizations,Immunological Stimulations,Sensitizations, Immunological,Stimulation, Immunological,Stimulations, Immunological,Variolations
D007116 Immunization, Passive Transfer of immunity from immunized to non-immune host by administration of serum antibodies, or transplantation of lymphocytes (ADOPTIVE TRANSFER). Convalescent Plasma Therapy,Immunoglobulin Therapy,Immunotherapy, Passive,Normal Serum Globulin Therapy,Passive Antibody Transfer,Passive Transfer of Immunity,Serotherapy,Passive Immunotherapy,Therapy, Immunoglobulin,Antibody Transfer, Passive,Passive Immunization,Therapy, Convalescent Plasma,Transfer, Passive Antibody
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009836 Oligodendroglia A class of large neuroglial (macroglial) cells in the central nervous system. Oligodendroglia may be called interfascicular, perivascular, or perineuronal (not the same as SATELLITE CELLS, PERINEURONAL of GANGLIA) according to their location. They form the insulating MYELIN SHEATH of axons in the central nervous system. Interfascicular Oligodendroglia,Oligodendrocytes,Perineuronal Oligodendroglia,Perineuronal Satellite Oligodendroglia Cells,Perivascular Oligodendroglia,Satellite Cells, Perineuronal, Oligodendroglia,Perineuronal Satellite Oligodendrocytes,Interfascicular Oligodendroglias,Oligodendrocyte,Oligodendrocyte, Perineuronal Satellite,Oligodendrocytes, Perineuronal Satellite,Oligodendroglia, Interfascicular,Oligodendroglia, Perineuronal,Oligodendroglia, Perivascular,Perineuronal Satellite Oligodendrocyte,Satellite Oligodendrocyte, Perineuronal,Satellite Oligodendrocytes, Perineuronal
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D003169 Complement Inactivator Proteins Serum proteins that negatively regulate the cascade process of COMPLEMENT ACTIVATION. Uncontrolled complement activation and resulting cell lysis is potentially dangerous for the host. The complement system is tightly regulated by inactivators that accelerate the decay of intermediates and certain cell surface receptors. Complement Cytolysis Inhibiting Proteins,Complement Cytolysis Inhibitor Proteins,Complement Inactivating Proteins,Serum Complement Inactivators,Complement Inactivators, Serum,Inactivating Proteins, Complement,Inactivator Proteins, Complement,Inactivators, Serum Complement,Proteins, Complement Inactivating,Proteins, Complement Inactivator
D004546 Elapid Venoms Venoms from snakes of the family Elapidae, including cobras, kraits, mambas, coral, tiger, and Australian snakes. The venoms contain polypeptide toxins of various kinds, cytolytic, hemolytic, and neurotoxic factors, but fewer enzymes than viper or crotalid venoms. Many of the toxins have been characterized. Cobra Venoms,Elapidae Venom,Elapidae Venoms,Naja Venoms,Cobra Venom,Elapid Venom,Hydrophid Venom,Hydrophid Venoms,King Cobra Venom,Naja Venom,Ophiophagus hannah Venom,Sea Snake Venom,Sea Snake Venoms,Venom, Cobra,Venom, Elapid,Venom, Elapidae,Venom, Hydrophid,Venom, King Cobra,Venom, Naja,Venom, Ophiophagus hannah,Venom, Sea Snake,Venoms, Cobra,Venoms, Elapid,Venoms, Elapidae,Venoms, Hydrophid,Venoms, Naja,Venoms, Sea Snake
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein

Related Publications

C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
April 1985, Vrachebnoe delo,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
May 1964, Nature,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
January 1973, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova (Moscow, Russia : 1952),
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
November 1968, Biulleten' eksperimental'noi biologii i meditsiny,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
January 1969, Revue d'immunologie et de therapie antimicrobienne,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
January 1957, Rivista di patologia nervosa e mentale,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
January 1964, Vestnik Akademii meditsinskikh nauk SSSR,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
January 1962, Deutsche Zeitschrift fur Nervenheilkunde,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
March 1965, Annals of the New York Academy of Sciences,
C Linington, and B P Morgan, and N J Scolding, and P Wilkins, and S Piddlesden, and D A Compston
March 1977, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!