The developing neuroepithelium in human embryonic and fetal brain studied with vimentin-immunocytochemistry. 1989

M Stagaard, and K Møllgård
Department of Medical Anatomy A, Panum Institute, Copenhagen N, Denmark.

The neuroepithelial cells, which constitute the primordium of the CNS, are potentially capable of generating neuronal and glial cell lineages concomitantly. The appearance and morphological development of vimentin-positive neuroepithelial cells in human embryonic and fetal brain (4-16 weeks) were studied with immunocytochemistry. In embryos aged 4-6 weeks, vimentin-reactivity was seen in all neuroepithelial cells, including those which exhibited mitotic figures. The distribution of reactivity changed according to a general developmental pattern, which commenced and proceeded temporally different in various regions of the CNS. All regions exhibited vimentin-positive neuroepithelial cells, the distribution and morphology of which gradually changed, resulting in lamination of the neural wall into two and subsequently three layers. The neocortex and midline raphe were the only regions to differ significantly from the general pattern. When reactivity to glial fibrillary acidic protein developed at 7-8 weeks, the distribution was very much like that of vimentin at the same stage. Reactivity to glial, neuronal and other cellular markers (S-100, neurofilament, neuron specific enolase, desmin, and cytokeratin) revealed different distributions. Although cells retaining vimentin beyond the ventricular zone stage are radial glial cells and presumptive fibrous astrocytes, it seems unlikely that vimentin is a marker for a distinct cell lineage during early CNS development. It is suggested that all neuroepithelial cells in vivo differentiate to a stage where they express vimentin, and that vimentin may have a functional role in cellular movements and during the interkinetic nuclear migration.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D009418 S100 Proteins A family of highly acidic calcium-binding proteins found in large concentration in the brain and believed to be glial in origin. They are also found in other organs in the body. They have in common the EF-hand motif (EF HAND MOTIFS) found on a number of calcium binding proteins. The name of this family derives from the property of being soluble in a 100% saturated ammonium sulfate solution. Antigen S 100,Nerve Tissue Protein S 100,S100 Protein,S-100 Protein,S100 Protein Family,Protein, S100,S 100 Protein
D010751 Phosphopyruvate Hydratase A hydro-lyase that catalyzes the dehydration of 2-phosphoglycerate to form PHOSPHOENOLPYRUVATE. Several different isoforms of this enzyme exist, each with its own tissue specificity. Enolase,Neuron-Specific Enolase,2-Phospho-D-Glycerate Hydro-Lyase,2-Phospho-D-Glycerate Hydrolase,2-Phosphoglycerate Dehydratase,Enolase 2,Enolase 3,Muscle-Specific Enolase,Nervous System-Specific Enolase,Non-Neuronal Enolase,alpha-Enolase,beta-Enolase,gamma-Enolase,2 Phospho D Glycerate Hydro Lyase,2 Phospho D Glycerate Hydrolase,2 Phosphoglycerate Dehydratase,Dehydratase, 2-Phosphoglycerate,Enolase, Muscle-Specific,Enolase, Nervous System-Specific,Enolase, Neuron-Specific,Enolase, Non-Neuronal,Hydratase, Phosphopyruvate,Hydro-Lyase, 2-Phospho-D-Glycerate,Muscle Specific Enolase,Nervous System Specific Enolase,Neuron Specific Enolase,Non Neuronal Enolase,System-Specific Enolase, Nervous,alpha Enolase,beta Enolase,gamma Enolase
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002831 Choroid Plexus A villous structure of tangled masses of BLOOD VESSELS contained within the third, lateral, and fourth ventricles of the BRAIN. It regulates part of the production and composition of CEREBROSPINAL FLUID. Chorioid Plexus,Plexus Choroideus,Choroideus, Plexus,Plexus, Chorioid,Plexus, Choroid
D003893 Desmin An intermediate filament protein found predominantly in smooth, skeletal, and cardiac muscle cells. Localized at the Z line. MW 50,000 to 55,000 is species dependent. Skeletin
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains

Related Publications

M Stagaard, and K Møllgård
January 1988, Histochemistry,
M Stagaard, and K Møllgård
March 2014, The Journal of veterinary medical science,
M Stagaard, and K Møllgård
October 1984, Archives of otolaryngology (Chicago, Ill. : 1960),
M Stagaard, and K Møllgård
January 1979, Morphologie et embryologie,
M Stagaard, and K Møllgård
March 1992, Laboratory investigation; a journal of technical methods and pathology,
M Stagaard, and K Møllgård
November 1991, Journal of clinical and experimental neuropsychology,
M Stagaard, and K Møllgård
December 1984, Experientia,
M Stagaard, and K Møllgård
August 2002, Microscopy research and technique,
Copied contents to your clipboard!