Changes in the testicular microvasculature during photoperiod-related seasonal transition from reproductive quiescence to reproductive activity in the adult golden hamster. 1989

A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
Department of Physiology, School of Medicine, Southern Illinois University, Carbondale 62901-6512.

The structure and permeability of the testicular microvasculature in the adult golden hamster during different phases of gonadal activity was examined. After 12 weeks of exposure to a short photoperiod (SD; 6L:18D), maximal testicular regression with over tenfold reduction in size was achieved as compared with active testes of animals maintained in long photoperiod (LD; 16L:8D). Testes weights and volumes in regressed testes were not significantly different from the values measured in animals undergoing early recrudescence (transfer from SD to LD for 1 or 2 weeks). The volume density of testicular blood vessels and their lumina did not differ significantly between fully gonadally active, fully regressed animals or those transferred from SD to LD for 2 weeks. However, in animals transferred for 1 week from SD to the stimulatory LD, the density of testicular blood vessels and vascular permeability to the endothelial tracer horseradish peroxidase were significantly increased, as compared to all other groups. An angiogenic process was observed by electron microscopy, which was initiated in the regressed gonad and which was prominent 1 week after transfer from SD to LD, but it was less conspicuous 2 weeks after transfer from SD to LD. The angiogenic process was characterized by activated developing blood vessels with a basal lamina and a lumen, which was formed by dilatation of an interendothelial space. There were two types of endothelial sprouts: the first with one layer of basal lamina, indicating true neovascularization, and the second with additional layers of basal lamina. In the latter, the presence of a superfluous basal lamina indicates that regeneration takes place along the path of old vessels. In fully regressed animals isolated basal-lamina-like structures were observed. Basal laminae are known to survive endothelial cell death, and these basal laminae later appear to serve as a scaffold for regeneration of new vessels. The rapid renewal of the testicular microvasculature under physiological stimuli suggests that the recrudescing testis of the golden hamster can be viewed as a physiological model of angiogenesis.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009389 Neovascularization, Pathologic A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions. Angiogenesis, Pathologic,Angiogenesis, Pathological,Neovascularization, Pathological,Pathologic Angiogenesis,Pathologic Neovascularization,Pathological Angiogenesis,Pathological Neovascularization
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish

Related Publications

A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
September 1977, Cell and tissue research,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
September 1993, Biology of reproduction,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
January 1985, Neuroscience and biobehavioral reviews,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
December 1978, Endocrinology,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
April 1980, Biology of reproduction,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
April 1982, Biology of reproduction,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
February 1989, Biology of reproduction,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
January 1970, Comptes rendus des seances de la Societe de biologie et de ses filiales,
A Mayerhofer, and A P Sinha Hikim, and A Bartke, and L D Russell
November 1980, Journal of reproduction and fertility,
Copied contents to your clipboard!