Differential activation of human skin cells by platelet activating factor: stimulation of phosphoinositide turnover and arachidonic acid mobilization in keratinocytes but not in fibroblasts. 1989

G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
Department of Dermatology, University of Michigan Medical Center, Ann Arbor 48109.

Treatment of cultured adult human keratinocytes with platelet activating factor (PAF) resulted in a rapid, dose dependent accumulation of inositol phosphates. Inositol trisphosphate (IP3), inositol bisphosphate (IP2) and inositol phosphate (IP) were elevated within 15 seconds of exposure to PAF (1 microM). Lyso-PAF, phosphatidylcholine (PC) and lyso-PC had no effect on levels of inositol phosphates, indicating that the effect of PAF was specific. PAF also raised cellular 1,2-diacylglycerol content (2-fold) within two minutes of addition and stimulated mobilization of arachidonic acid (AA) and release of prostaglandin E2. In contrast, PAF did not stimulate phosphoinositide turnover or AA release in cultured dermal fibroblasts. These results suggest that the inflammatory effects of PAF in human skin result, at least in part, from its ability to directly activate keratinocytes and stimulate release of pro-inflammatory eicosanoids.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D007295 Inositol Phosphates Phosphoric acid esters of inositol. They include mono- and polyphosphoric acid esters, with the exception of inositol hexaphosphate which is PHYTIC ACID. Inositol Phosphate,Phosphate, Inositol,Phosphates, Inositol
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
February 1990, Neuroscience letters,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
November 1990, Journal of neurochemistry,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
June 1993, British journal of clinical pharmacology,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
January 1994, Biochimica et biophysica acta,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
November 1994, Biochemical Society transactions,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
January 1995, Skin pharmacology : the official journal of the Skin Pharmacology Society,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
November 1994, Biochimica et biophysica acta,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
May 1986, Molecular and cellular endocrinology,
G J Fisher, and H S Talwar, and N S Ryder, and J J Voorhees
April 2010, Archives of dermatological research,
Copied contents to your clipboard!