Electrical properties and molecular architecture of the channel formed by Escherichia coli hemolysin in planar lipid membranes. 1989

M Ropele, and G Menestrina
Dipartimento di Fisica, Universitá di Trento, Povo, Italy.

A 107 kDa hemolysin from Escherichia coli is able to open pores in lipid membranes. By studying its interaction with planar phospholipid bilayers we have derived some structural information on the organization of the pore. We measured the current-voltage characteristic and the ion selectivity of the channel both in neutral membranes, made of egg phosphatidylcholine (PC) and in negatively charged membranes, made of a 1:1 mixture of PC with phosphatidylserine (PS). Experiments were performed varying both the pH and the salt concentration of the bathing KCl solution. In neutral membranes the pore is ohmic and its conductance increases almost linearly with the salt concentration. The channel is cation-selective at high pH but nearly unselective at low pH. We interpret these results in terms of a minimal model based on classical electro-diffusional theories assuming that the pore is wide and bears a negative charge at its entrances. In membranes containing the acidic lipid the current-voltage curve is non-linear in such a way to suggest that the trans (but not the cis) entrance of the pore is affected by the surface potential of the membrane. Applying our model we find that the trans and cis entrances are located, respectively, about 0.5 nm and more than 5 nm apart from the plane of the membrane. We confirmed the asymmetric disposition of the channel by enzymatic digestion of preformed pores. This was effective only when the enzyme was applied on the cis side.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006460 Hemolysin Proteins Proteins from BACTERIA and FUNGI that are soluble enough to be secreted to target ERYTHROCYTES and insert into the membrane to form beta-barrel pores. Biosynthesis may be regulated by HEMOLYSIN FACTORS. Hemolysin,Hemolysins,Hemalysins,Proteins, Hemolysin

Related Publications

M Ropele, and G Menestrina
October 1988, The Journal of membrane biology,
M Ropele, and G Menestrina
January 1984, Biophysics of structure and mechanism,
M Ropele, and G Menestrina
June 1974, Journal of bacteriology,
M Ropele, and G Menestrina
May 1984, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
M Ropele, and G Menestrina
January 1997, Journal of virology,
M Ropele, and G Menestrina
May 1997, Biochimica et biophysica acta,
M Ropele, and G Menestrina
November 1986, Biochimica et biophysica acta,
Copied contents to your clipboard!