Organization of afferent and efferent pathways in the pudendal nerve of the female cat. 1989

K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
Department of Pharmacology, University of Pittsburgh, Pennsylvania 15261.

Application of horseradish peroxidase to the pudendal nerve in the female cat labelled lumbosacral afferent and efferent neurons and their processes. Afferent axons entered the spinal cord primarily at the S1 and S2 segments and traveled rostrocaudally in Lissauer's tract and the dorsal columns. A distinctive component of the dorsal column projection was located at the lamina I-dorsal column border as a densely labelled, compact bundle that distributed fibers to the dorsal horn at spinal levels near the segments of entry of the afferent axons. Afferent terminal labelling was located in the marginal zone, the intermediate gray matter, and the dorsal gray commissure in the lumbosacral and coccygeal spinal cord. A well-defined terminal field restricted to the S1 and rostral S2 segments was present in the medial third of the nucleus proprius and substantia gelatinosa. Labelled motoneurons in Onuf's nucleus (S1 and S2) exhibited longitudinal dendrites that extended rostrocaudally within the nucleus and three groups of transverse dendrites that emanated periodically from the nucleus and passed to the ventrolateral funiculus, the intermediate gray, and the dorsal gray commissure. Components of the pudendal nerve that innervate the anal and urethral sphincters were also labelled by injecting HRP into the respective sphincter muscles. Motoneurons innervating the anal and urethral sphincters were located in the dorsomedial and ventrolateral divisions, respectively, of Onuf's nucleus. Afferent projections from the two sphincters were similar; the most prominent terminations were present in the marginal zone, intermediate gray, and dorsal gray commissure. These results are discussed with respect to the physiological function of the pudendal nerve and its relationship with sacral autonomic pathways.

UI MeSH Term Description Entries
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D005836 Genitalia, Female The female reproductive organs. The external organs include the VULVA; BARTHOLIN'S GLANDS; and CLITORIS. The internal organs include the VAGINA; UTERUS; OVARY; and FALLOPIAN TUBES. Accessory Sex Organs, Female,Sex Organs, Accessory, Female,Genital Organs, Female,Genitals, Female,Reproductive System, Female,Female Genital,Female Genital Organ,Female Genital Organs,Female Genitalia,Female Genitals,Female Reproductive System,Female Reproductive Systems,Genital Organ, Female,Genital, Female,Reproductive Systems, Female
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic

Related Publications

K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
January 1984, The Journal of comparative neurology,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
January 1987, Anatomy and embryology,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
February 1985, The Journal of comparative neurology,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
July 1986, The Journal of comparative neurology,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
May 1988, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
June 1986, The Journal of comparative neurology,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
January 1987, Clinical and experimental hypertension. Part A, Theory and practice,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
April 1997, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
May 1988, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
K B Thor, and C Morgan, and I Nadelhaft, and M Houston, and W C De Groat
June 1952, The Journal of physiology,
Copied contents to your clipboard!