The influence of self-MHC and non-MHC antigens on the selection of an antigen-specific T cell receptor repertoire. 1989

A M Fry, and M M Cotterman, and L A Matis
Division of Biochemistry and Biophysics, Food and Drug Administration, Bethesda, MD 20892.

We have examined the influence of self-Ag on TCR expression and specificity in the immune response to the Ag pigeon cytochrome c. Previous work has shown that most Ek-restricted cytochrome c-specific T cells from B10 background mice express TCR alpha beta-heterodimers encoded by V beta 3 and V alpha 11 genes, but that T cells expressing V beta 3 proteins are eliminated due to self-tolerance in Mls-2a mouse strains. Thus, EK-restricted cytochrome c-specific T cells from Mls-2a mice fail to express any V beta 3. In the current study the influence of self-MHC and non-MHC Ag on TCR usage in the immune response to cytochrome c was further examined. First, it was demonstrated that the absence of V beta 3 expression in Mls-2a mice does not alter Ir gene function. Specifically, Mls-2a/Eb haplotype V beta 3- [C3H.SW x B10.A(5R)]F1 mice were high responders to cytochrome c despite the fact that previous structure function analyses have shown a very close correlation between Eb-restricted cytochrome c recognition and V beta 3 expression. This demonstration of the plasticity of TCR expression suggests that relatively few Ir gene defects result from tolerance induced by self-Ag. We also examined differences in V alpha 11 expression among cytochrome c-specific T cells from various H-2k haplotype mouse strains. In particular, the low level of expression of V alpha 11 in cytochrome c-specific T cells from C57BR (H-2k) mice was shown not to be due to self-tolerance. Rather, evidence for limited strain polymorphism of V alpha 11 genes, plus the fact that cytochrome c-specific T cells from F1 hybrids between H-2k, Mls-2b identical C57BR and B10.BR mice express high levels of V alpha 11, suggested the possibility that the variable V alpha 11 usage in the cytochrome c-specific responses of these two strains reflected differences in positive selection during ontogeny by non-MHC non-Mls self-Ag.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D008805 Mice, Inbred A An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mouse, Inbred A,Inbred A Mice,Inbred A Mouse
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D010856 Columbidae Family in the order COLUMBIFORMES, comprised of pigeons or doves. They are BIRDS with short legs, stout bodies, small heads, and slender bills. Some sources call the smaller species doves and the larger pigeons, but the names are interchangeable. Columba livia,Doves,Pigeons,Domestic Pigeons,Feral Pigeons,Rock Doves,Rock Pigeons,Domestic Pigeon,Dove,Dove, Rock,Doves, Rock,Feral Pigeon,Pigeon,Pigeon, Domestic,Pigeon, Feral,Pigeon, Rock,Pigeons, Domestic,Pigeons, Feral,Pigeons, Rock,Rock Dove,Rock Pigeon
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors

Related Publications

A M Fry, and M M Cotterman, and L A Matis
January 1988, Annals of the New York Academy of Sciences,
A M Fry, and M M Cotterman, and L A Matis
July 2000, Proceedings of the National Academy of Sciences of the United States of America,
A M Fry, and M M Cotterman, and L A Matis
October 1988, Immunology today,
A M Fry, and M M Cotterman, and L A Matis
January 1988, Immunological reviews,
A M Fry, and M M Cotterman, and L A Matis
February 2010, Molecular immunology,
A M Fry, and M M Cotterman, and L A Matis
January 2005, Critical reviews in immunology,
A M Fry, and M M Cotterman, and L A Matis
February 1993, Immunological reviews,
A M Fry, and M M Cotterman, and L A Matis
June 2024, The Journal of allergy and clinical immunology,
Copied contents to your clipboard!