Mapping of the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. 1989

D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
Department of Anatomy, UMDNJ--New Jersey Medical School, Newark 07103-2757.

The microcirculation within the chorioallantoic membrane (CAM) of the chick is particularly well suited for in vivo observation and has been used extensively as an assay to detect angiogenic activity. Although progressive chronological expansion of the CAM capillary network occurs normally during embryogenesis, descriptions of the branching patterns of CAM pre- and postcapillary microvessels during embryonic development have not been recorded. In the present study chick embryos were incubated, using an established shell-less culture technique, and observed in vivo at Days 6, 10, and 14 of embryonic development. Morphometric analyses of photomicrographs of CAM microvessels were based upon the centripetal ordering method of microvascular mapping of the first three orders of pre- and postcapillary microvessels with the capillaries serving as the initial point of reference. For both pre- and postcapillary vessels, the number of first-order vessels exceeded the number of second-order vessels which, in turn, outnumbered third-order vessels during each observation period. First- and second-order vessels progressively increased in number from Day 6 to Day 14; however, the number of third-order vessels remained essentially constant during this period. Further, the number of precapillary vessels was greater than postcapillary vessels in their respective orders at Days 6 and 10; however, by Day 14 the numbers were comparable. Average diameters and lengths of the third-order vessels were greater than the second-order vessels which, in turn, were greater than the first-order vessels in both the pre- and postcapillary compartments. Further, mean lengths of each of the three vessel orders in both compartments decreased progressively and by Day 14 were significantly less than at Day 6. Average diameters of each vessel order, on the other hand, remained unchanged from Day 6 to Day 14. Finally, intercapillary distances, based on measurements from fluorescent micrographs obtained after microinjections of fluorescein isothiocyanate (FITC)-dextran, were substantially less at Day 10 and 14 than at Day 6. Based on these morphometric data, the endothelial precursor responsible for continuous neoformation of first- and second-order microvessels during embryogenesis remains uncertain. Whether existing first-, second-, or third-order vessel endothelia serve as this precursor or histodifferentiation of existing capillaries enables continuous expansion of the first- and second-order microvessels remains to be tested.

UI MeSH Term Description Entries
D008833 Microcirculation The circulation of the BLOOD through the MICROVASCULAR NETWORK. Microvascular Blood Flow,Microvascular Circulation,Blood Flow, Microvascular,Circulation, Microvascular,Flow, Microvascular Blood,Microvascular Blood Flows,Microvascular Circulations
D009389 Neovascularization, Pathologic A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions. Angiogenesis, Pathologic,Angiogenesis, Pathological,Neovascularization, Pathological,Pathologic Angiogenesis,Pathologic Neovascularization,Pathological Angiogenesis,Pathological Neovascularization
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002823 Chorion The outermost extra-embryonic membrane surrounding the developing embryo. In REPTILES and BIRDS, it adheres to the shell and allows exchange of gases between the egg and its environment. In MAMMALS, the chorion evolves into the fetal contribution of the PLACENTA. Chorions
D005321 Extraembryonic Membranes The thin layers of tissue that surround the developing embryo. There are four extra-embryonic membranes commonly found in VERTEBRATES, such as REPTILES; BIRDS; and MAMMALS. They are the YOLK SAC, the ALLANTOIS, the AMNION, and the CHORION. These membranes provide protection and means to transport nutrients and wastes. Fetal Membranes,Extra-Embryonic Membranes,Extra Embryonic Membranes,Extra-Embryonic Membrane,Extraembryonic Membrane,Fetal Membrane,Membrane, Extra-Embryonic,Membrane, Extraembryonic,Membrane, Fetal,Membranes, Extra-Embryonic,Membranes, Extraembryonic,Membranes, Fetal
D000482 Allantois An extra-embryonic membranous sac derived from the YOLK SAC of REPTILES; BIRDS; and MAMMALS. It lies between two other extra-embryonic membranes, the AMNION and the CHORION. The allantois serves to store urinary wastes and mediate exchange of gas and nutrients for the developing embryo. Allantoic Membrane,Membrane, Allantoic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
January 2001, Methods in molecular medicine,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
March 1995, Microvascular research,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
May 2007, Journal of molecular medicine (Berlin, Germany),
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
May 2013, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
March 1991, The Journal of surgical research,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
April 1988, Methods and findings in experimental and clinical pharmacology,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
January 1996, International journal of microcirculation, clinical and experimental,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
May 2003, Current protocols in cell biology,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
January 2015, The International journal of developmental biology,
D O DeFouw, and V J Rizzo, and R Steinfeld, and R N Feinberg
January 1998, Clinical rheumatology,
Copied contents to your clipboard!