Barium- and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. 1989

A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
Laboratoire de Physiologie Comparée, Laboratoire des Biomembranes, des Ensembles Neuronaux (CNRS URA 1121), Université Paris-XI, Orsay.

Ca2+- and Ba2+-permeable channel activity from adult rat ventricular myocytes, spontaneously appeared in the three single-channel recording configurations: cell-attached, and excised inside-out or outside-out membrane patches. Single-channel activity was recorded at steady-state applied membrane potentials including the entire range of physiologic values, and displayed no "rundown" in excised patches. This activity occurred in irregular bursts separated by quiescent periods of 5 to 20 min in cell-attached membrane patches, whereas in excised patch experiments, this period was reduced to 2 to 10 min. During activity, a variety of kinetic behaviors could be observed with more or less complex gating patterns. Three conductance levels: 22, 45 and 78 pS were routinely observed in the same excised membrane patch, sometimes combining to give a larger level. These channels were significantly permeable to divalent cations and showed little or no permeability to potassium or sodium ions. The inorganic blockers of voltage-gated Ca channels, cobalt (2 mM), cadmium (0.5 mM) or nickel (3 mM), had no apparent effect on these spontaneous unitary currents carried by barium ions. Under 10(5) M Bay K 8644 or nitrendipine, the activity was clearly increased in about half of the tested excised inside-out membrane patches. Both dihydropyridines enhanced openings of the larger conductance level, which was only very occasionally seen under control conditions. When the single-channel activity became sustained under 5 x 10(-6) M Bay K 8644, it was possible to calculate the mean unitary current at different membrane potentials and show that the mean current value increased with membrane potential.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009568 Nitrendipine A calcium channel blocker with marked vasodilator action. It is an effective antihypertensive agent and differs from other calcium channel blockers in that it does not reduce glomerular filtration rate and is mildly natriuretic, rather than sodium retentive. Balminil,Bay e 5009,Bayotensin,Baypresol,Baypress,Gericin,Jutapress,Nidrel,Niprina,Nitre AbZ,Nitre-Puren,Nitregamma,Nitren 1A Pharma,Nitren Lich,Nitren acis,Nitrend KSK,Nitrendepat,Nitrendi Biochemie,Nitrendidoc,Nitrendimerck,Nitrendipin AL,Nitrendipin Apogepha,Nitrendipin Atid,Nitrendipin Basics,Nitrendipin Heumann,Nitrendipin Jenapharm,Nitrendipin Lindo,Nitrendipin Stada,Nitrendipin beta,Nitrendipin-ratiopharm,Nitrendipino Bayvit,Nitrendipino Ratiopharm,Nitrensal,Nitrepress,Tensogradal,Trendinol,Vastensium,nitrendipin von ct,nitrendipin-corax,Nitre Puren,NitrePuren,Nitrendipin ratiopharm,Nitrendipinratiopharm,nitrendipin corax,nitrendipincorax
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D001498 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester A dihydropyridine derivative, which, in contrast to NIFEDIPINE, functions as a calcium channel agonist. The compound facilitates Ca2+ influx through partially activated voltage-dependent Ca2+ channels, thereby causing vasoconstrictor and positive inotropic effects. It is used primarily as a research tool. BK-8644,Bay R5417,Bay-K-8644,Bay-K-8644, (+)-Isomer,Bay-K-8644, (+-)-Isomer,Bay-K-8644, (-)-Isomer,Bay-K8644,Bay-R-5417,BK 8644,BK8644,Bay K 8644,Bay K8644,Bay R 5417,BayK8644,BayR5417,R5417, Bay
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
July 1988, The Journal of general physiology,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
March 2007, American journal of physiology. Cell physiology,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
August 2002, Pflugers Archiv : European journal of physiology,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
January 2006, Biophysical journal,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
March 1994, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
January 1987, The Journal of membrane biology,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
September 1995, The Journal of membrane biology,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
January 2004, Acta physiologica Scandinavica,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
August 2003, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
A Coulombe, and I A Lefèvre, and I Baro, and E Coraboeuf
November 1992, Circulation research,
Copied contents to your clipboard!