Cloning, sequence analysis and expression of a cDNA encoding a novel insulin-like growth factor binding protein (IGFBP-2). 1989

C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
Zentrum für Lehre und Forschung, Kantonsspital, Basel, Switzerland.

Insulin-like growth factors bind with high affinity to specific binding proteins in extracellular fluids. To identify structural characteristics of IGF-binding proteins that might define their physiological roles, we determined the complete primary structure of a novel human IGF-binding protein (IGFBP-2) from a cloned cDNA. The cDNA encodes a 328 amino acid IGF-binding protein precursor which contains a 39-residue signal peptide. The mature 289 amino acid IGFBP-2 has a predicted Mr of 31,325. Chinese hamster ovary (CHO) cells stably transformed with the IGFBP-2 cDNA secreted a 36 kd protein which bound, with different affinities, IGFII and IGFI, but did not bind insulin. The predicted protein sequence of this IGF-binding protein shares extensive amino acid homology (greater than 85%) with the IGF-binding protein secreted by rat BRL-3A cells, but less than 40% homology with human IGFBP-1. Therefore IGFBP-2, and not IGFBP-1 as previously suggested, represents the human homologue of the rat BRL-BP (alpha IGFBP-2). Moreover, from alignment of the predicted protein sequences of IGFBP-1 and IGFBP-2, extensive conservation of the distribution of cysteine residues is observed. Although the overall amino acid homology shared by these proteins is not high, we suggest that they represent a family of structurally related human IGFBPs. Southern blot analysis of human DNA demonstrates that IGFBP-2 is encoded by a single-copy gene, different from that of IGFBP-1.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013002 Somatomedins Insulin-like polypeptides made by the liver and some fibroblasts and released into the blood when stimulated by SOMATOTROPIN. They cause sulfate incorporation into collagen, RNA, and DNA synthesis, which are prerequisites to cell division and growth of the organism. Sulfation Factor,Somatomedin,Factor, Sulfation
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
December 2014, Fish physiology and biochemistry,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
January 1994, Pediatric pathology,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
March 1989, European journal of biochemistry,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
February 1992, Journal of cellular biochemistry,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
August 2004, Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
February 2018, The Journal of reproduction and development,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
January 1991, DNA sequence : the journal of DNA sequencing and mapping,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
August 1993, Gene,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
January 2007, Anticancer research,
C Binkert, and J Landwehr, and J L Mary, and J Schwander, and G Heinrich
October 2005, Theriogenology,
Copied contents to your clipboard!