Regenerated retinal ganglion cell axons can form well-differentiated synapses in the superior colliculus of adult hamsters. 1989

D A Carter, and G M Bray, and A J Aguayo
Center for Research in Neuroscience, Montreal General Hospital Research Institute, Quebec, Canada.

To investigate in adult animals the distribution and differentiation of the synapses made by axotomized CNS neurons whose regenerating axons are guided back to their natural targets in the brain, we attached an autologous peripheral nerve (PN) graft 2-3 cm in length to the ocular stump of a transected optic nerve (ON) in adult hamsters, inserted the distal end of the graft into the superior colliculus (SC), and, 6-8 weeks later, labeled the retinal ganglion cell (RGC) axons that entered the SC with HRP orthogradely transported from the eye. By light microscopy, regenerated RGC axons extended from the graft into the retinorecipient layers of the SC for up to 500 microns, distances that approximate the lengths of normal RGC arbors. We compared 698 control and 758 regenerated HRP-labeled axon terminals from 4 intact and 4 experimental animals by electron microscopy. The structure of the regenerated RGC terminals, the type of synaptic contacts formed, the ratios of contacts to terminal perimeter, and the domains of the postsynaptic neurons contacted were similar to those of controls. These results indicate that regenerated RGC axons can form well-differentiated synapses in the SC. Morphological differences between the regenerated and control synapses were the larger size of some regenerated terminals, the greater mean length of the regenerated synapses, and the higher proportion of contacts with dendrites that contained vesicles. The synaptic differentiation attained by these reformed retinocollicular projections suggests that regenerating CNS axons and their target neurons in the adult mammalian brain may retain or reexpress certain molecular determinants of normal connectivity.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010543 Peroneal Nerve The lateral of the two terminal branches of the sciatic nerve. The peroneal (or fibular) nerve provides motor and sensory innervation to parts of the leg and foot. Fibular Nerve,Fibular Nerves,Nerve, Fibular,Nerve, Peroneal,Nerves, Fibular,Nerves, Peroneal,Peroneal Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D005260 Female Females
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

D A Carter, and G M Bray, and A J Aguayo
February 2001, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D A Carter, and G M Bray, and A J Aguayo
January 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D A Carter, and G M Bray, and A J Aguayo
November 1991, Journal of neurocytology,
D A Carter, and G M Bray, and A J Aguayo
August 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D A Carter, and G M Bray, and A J Aguayo
July 1987, Experimental neurology,
D A Carter, and G M Bray, and A J Aguayo
February 1999, Experimental brain research,
D A Carter, and G M Bray, and A J Aguayo
October 2002, The European journal of neuroscience,
D A Carter, and G M Bray, and A J Aguayo
January 1988, Progress in brain research,
Copied contents to your clipboard!