Oxidative DNA damage photo-induced by 3-carbethoxypsoralen and other furocoumarins. Mechanisms of photo-oxidation and recognition by repair enzymes. 1989

E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
CNRS UA 1292, Institut Curie, Paris, France.

DNA photosensitization by several furocoumarins (including 3-carbethoxypsoralen (3-CPs), 8-methoxypsoralen (8-MOP), 5-methoxypsoralen (5-MOP) and angelicin was investigated by using DNA sequencing methodology. 3-CPs induces photo-oxidation of guanine residues leading to alkali-labile sites in DNA (revealed by hot piperidine), whereas 8-MOP, 5-MOP and angelicin do not. There is a preferential photo-oxidation of G when located on the 5' side of GG doublets, likely to reflect a better accessibility of the G moiety in such a context. Mechanisms operating via both radicals (type I) and singlet oxygen (type II) are involved in the photo-oxidation of G residues by 3-CPs. Photo-oxidized G residues are produced independently of the formation of photoadducts, and scavengers of singlet oxygen or radicals do not inhibit photobinding of 3-CPs to DNA. This leads us to propose that covalent photoadducts arise from the intercalated excited sensitizer molecules, whereas G photo-oxidations are produced either by electron transfer reactions involving bound 3-CPs or by energy transfer to molecular oxygen, thereby producing singlet oxygen that subsequently reacts with guanine bases. Quantification of both types of DNA lesions indicated that in vitro photo-oxidized G residues are produced in DNA by 3-CPs plus ultraviolet light at least to the same extent as photoadducts, under our conditions. A calf thymus redoxyendonuclease, equivalent to the endonuclease III of Escherichia coli, specific for oxidative DNA damages, recognizes and cleaves DNA at sites of photo-oxidized G residues. The extent of the cleavage by this enzyme was close to that observed by hot piperidine and followed the amount of photo-oxidized G residues produced when the lifetime of excited oxygen species is modified. The redoxyendonuclease did not incise DNA treated with 8-MOP, 5-MOP or angelicin plus ultraviolet light. The exonuclease III and endonuclease IV of E. coli also involved in the repair of oxidative DNA damage, convert the replicative form I of 3-CPs-treated DNA to replicative form II. This suggests that the lesions recognized by these enzymes are apurinic-like lesions. In view of the low toxicity and mutagenicity of 3-CPs, DNA photo-oxidation products induced by the photodynamic effect of 3-CPs are likely to be efficiently taken care of by the DNA repair system(s). It is clear that 3-CPs photo-induces several classes of DNA damage, including oxidative damage.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010880 Piperidines A family of hexahydropyridines.
D011564 Furocoumarins Polycyclic compounds consisting of a furan ring fused with coumarin. They commonly occur in PLANTS, especially UMBELLIFERAE and RUTACEAE, as well as PSORALEA. Furanocoumarin,Furanocoumarins,Furocoumarin,Psoralens,Angelicins
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004706 Endodeoxyribonucleases A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA

Related Publications

E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
June 1993, Mutation research,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
May 2003, Frontiers in bioscience : a journal and virtual library,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
January 2012, Journal of toxicology and environmental health. Part A,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
January 2000, Annals of the New York Academy of Sciences,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
January 2001, Cell biochemistry and biophysics,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
January 2001, Progress in nucleic acid research and molecular biology,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
October 2000, Mutation research,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
May 2007, The EMBO journal,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
March 2018, Organic & biomolecular chemistry,
E Sage, and T Le Doan, and V Boyer, and D E Helland, and L Kittler, and C Helene, and E Moustacchi
January 2011, Frontiers in bioscience (Landmark edition),
Copied contents to your clipboard!