Phosphorylation of 3'-azido-2',3'-dideoxyuridine and preferential inhibition of human and simian immunodeficiency virus reverse transcriptases by its 5'-triphosphate. 1989

B F Eriksson, and C K Chu, and R F Schinazi
Veterans Administration Medical Center (Atlanta), Decatur, Georgia 30033.

3'-Azido-2',3'-dideoxyuridine-5'-triphosphate was found to be a potent and highly selective inhibitor of human immunodeficiency virus type 1 and simian immunodeficiency virus reverse transcriptases. The affinity of 3'-azido-2',3'-dideoxyuridine-5'-triphosphate for the reverse transcriptases was similar to that observed for 3'-azido-3'-deoxythymidine-5'-triphosphate. Both compounds were competitive inhibitors with respect to the normal substrate dTTP and served at least 100 times better as substrates than did dTTP. In contrast, cellular DNA polymerase alpha showed an about 60-times-higher preference for dTTP as substrate than for either inhibitor. The phosphorylation of thymidine in human peripheral blood mononuclear cell extracts was inhibited in a competitive manner by both 3'-azido-2',3'-dideoxyuridine and 3'-azido-3'-deoxythymidine, with apparent inhibition constants of 290 and 3.4 microM, respectively. The Michaelis-Menten constant, Km, for thymidine was 7.0 microM. 3'-Azido-2',3'-dideoxyuridine and 3'-azido-3'-deoxythymidine both served as substrates, with apparent Km values of 67 and 1.4 microM, respectively. The maximal rates of phosphorylation with 3'-azido-2',3'-dideoxyuridine and 3'-azido-3'-deoxythymidine were 40 and 30%, respectively, of the rate with thymidine. The different affinities of 3'-azido-2',3'-dideoxyuridine and 3'-azido-3'-deoxythymidine for the thymidine kinase and the Km values observed with these compounds as substrates may explain the difference in effects on human immunodeficiency virus type 1 replication in infected peripheral blood mononuclear cells observed when equimolar concentrations of the two compounds are compared.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004257 DNA Polymerase II A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms. It may be present in higher organisms and has an intrinsic molecular activity only 5% of that of DNA Polymerase I. This polymerase has 3'-5' exonuclease activity, is effective only on duplex DNA with gaps or single-strand ends of less than 100 nucleotides as template, and is inhibited by sulfhydryl reagents. DNA Polymerase epsilon,DNA-Dependent DNA Polymerase II,DNA Pol II,DNA Dependent DNA Polymerase II
D006678 HIV Human immunodeficiency virus. A non-taxonomic and historical term referring to any of two species, specifically HIV-1 and/or HIV-2. Prior to 1986, this was called human T-lymphotropic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV). From 1986-1990, it was an official species called HIV. Since 1991, HIV was no longer considered an official species name; the two species were designated HIV-1 and HIV-2. AIDS Virus,HTLV-III,Human Immunodeficiency Viruses,Human T-Cell Lymphotropic Virus Type III,Human T-Lymphotropic Virus Type III,LAV-HTLV-III,Lymphadenopathy-Associated Virus,Acquired Immune Deficiency Syndrome Virus,Acquired Immunodeficiency Syndrome Virus,Human Immunodeficiency Virus,Human T Cell Lymphotropic Virus Type III,Human T Lymphotropic Virus Type III,Human T-Cell Leukemia Virus Type III,Immunodeficiency Virus, Human,Immunodeficiency Viruses, Human,Virus, Human Immunodeficiency,Viruses, Human Immunodeficiency,AIDS Viruses,Human T Cell Leukemia Virus Type III,Lymphadenopathy Associated Virus,Lymphadenopathy-Associated Viruses,Virus, AIDS,Virus, Lymphadenopathy-Associated,Viruses, AIDS,Viruses, Lymphadenopathy-Associated
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013937 Thymidine Kinase An enzyme that catalyzes the conversion of ATP and thymidine to ADP and thymidine 5'-phosphate. Deoxyuridine can also act as an acceptor and dGTP as a donor. (From Enzyme Nomenclature, 1992) EC 2.7.1.21. Deoxythymidine Kinase,Deoxypyrimidine Kinase,Kinase, Deoxypyrimidine,Kinase, Deoxythymidine,Kinase, Thymidine
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U

Related Publications

B F Eriksson, and C K Chu, and R F Schinazi
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
B F Eriksson, and C K Chu, and R F Schinazi
July 1990, The Journal of biological chemistry,
B F Eriksson, and C K Chu, and R F Schinazi
September 1990, European journal of biochemistry,
Copied contents to your clipboard!