The kinematics of cytotoxic lymphocytes influence their ability to kill target cells. 2014

Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia.

Cytotoxic lymphocytes (CTL) have been reported to show a range of motility patterns from rapid long-range tracking to complete arrest, but how and whether these kinematics affect their ability to kill target cells is not known. Many in vitro killing assays utilize cell lines and tumour-derived cells as targets, which may be of limited relevance to the kinetics of CTL-mediated killing of somatic cells. Here, live-cell microscopy is used to examine the interactions of CTL and primary murine skin cells presenting antigens. We developed a qualitative and quantitative killing assay using extended-duration fluorescence time-lapse microscopy coupled with large-volume objective software-based data analysis to obtain population data of cell-to-cell interactions, motility and apoptosis. In vivo and ex vivo activated antigen-specific cytotoxic lymphocytes were added to primary keratinocyte targets in culture with fluorometric detection of caspase-3 activation in targets as an objective determinant of apoptosis. We found that activated CTL achieved contact-dependent apoptosis of non-tumour targets after a period of prolonged attachment - on average 21 hours - which was determined by target cell type, amount of antigen, and activation status of CTL. Activation of CTL even without engagement of the T cell receptor was sufficient to mobilise cells significantly above baseline, while the addition of cognate antigen further enhanced their motility. Highly activated CTL showed markedly increased vector displacement, and velocity, and lead to increased antigen-specific target cell death. These data show that the inherent kinematics of CTL correlate directly with their ability to kill non-tumour cells presenting cognate antigen.

UI MeSH Term Description Entries
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D015603 Keratinocytes Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell. Keratinocyte
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
October 1994, Current biology : CB,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
September 2020, Signal transduction and targeted therapy,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
October 1998, Current opinion in immunology,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
November 2015, Clinical cancer research : an official journal of the American Association for Cancer Research,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
February 2008, Blood,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
October 1977, Nature,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
March 1992, The Journal of experimental medicine,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
January 1980, Progress in allergy,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
March 2019, IUBMB life,
Purnima Bhat, and Graham Leggatt, and Klaus I Matthaei, and Ian H Frazer
January 1974, Folia biologica,
Copied contents to your clipboard!