Manganese(II) dynamics and distribution in glial cells cultured from chick cerebral cortex. 1989

F C Wedler, and B W Ley, and A A Grippo
Department of Molecular & Cell Biology, Pennsylvania State University, University Park 16802.

The kinetics of manganese(II) ion uptake and efflux have been investigated using tracer 54Mn(II) with glial cells cultured from chick cerebral cortex in chemically defined medium. The initial velocity of Mn(II) uptake versus [Mn(II)] exhibit saturation, with an apparent S0.5 approximately 18(+/- 3) microM. Both the rate and extent of Mn(II) uptake are inhibited by Ca(II), either added externally or preloaded into the glial cells. Preloading of glia with Mn(II) also inhibits the rate of external 54Mn(II) uptake. Zn(II) inhibits but Cu(II) activates Mn(II) uptake. Efflux of Mn(II) from preloaded cells occurs as a biphasic process, with rapid release of 30-40% of total cell Mn(II), then much slower release of the remainder. Permeabilization of cells with dextran sulfate also rapidly released ca. 30% of total cell Mn(II). High external Mn(II) enhanced both the rate and extent of Mn(II) efflux. CCCP, an uncoupler of oxidative phosphorylation, inhibited both Mn(II) uptake and efflux significantly, but addition of cyanide, ouabain, insulin, hydrocortisone, K+, or Nd(III) had no effect on either process. Taken together, these data suggest a model in which Mn(II) is brought across the plasma membrane by facilitated diffusion, binds to cytosolic protein sites, and is partitioned into the mitochondria by an active transport mechanism. The fact that the Mn(II) flux rates observed with cultured glia are much faster than those reported for overall uptake and efflux of brain Mn(II) in vivo suggests that the blood-brain barrier may play a significant role in determining these latter rates in whole animals.

UI MeSH Term Description Entries
D008345 Manganese A trace element with atomic symbol Mn, atomic number 25, and atomic weight 54.94. It is concentrated in cell mitochondria, mostly in the pituitary gland, liver, pancreas, kidney, and bone, influences the synthesis of mucopolysaccharides, stimulates hepatic synthesis of cholesterol and fatty acids, and is a cofactor in many enzymes, including arginase and alkaline phosphatase in the liver. (From AMA Drug Evaluations Annual 1992, p2035)
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D011190 Potassium Cyanide A highly poisonous compound that is an inhibitor of many metabolic processes, but has been shown to be an especially potent inhibitor of heme enzymes and hemeproteins. It is used in many industrial processes. Potassium Cyanide (K(14)CN),Potassium Cyanide (K(C(15)N)),Cyanide, Potassium
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

F C Wedler, and B W Ley, and A A Grippo
January 1988, Neurochemical research,
F C Wedler, and B W Ley, and A A Grippo
April 1968, Journal of neurochemistry,
F C Wedler, and B W Ley, and A A Grippo
February 1983, Archives of biochemistry and biophysics,
F C Wedler, and B W Ley, and A A Grippo
January 1981, Journal of neurochemistry,
F C Wedler, and B W Ley, and A A Grippo
September 1985, Neuroscience,
F C Wedler, and B W Ley, and A A Grippo
October 1973, Journal of neurochemistry,
F C Wedler, and B W Ley, and A A Grippo
January 1967, Journal de physiologie,
F C Wedler, and B W Ley, and A A Grippo
March 1982, Journal of cellular physiology,
Copied contents to your clipboard!