Activation of the hprt gene on the inactive X chromosome in transformed diploid female Chinese hamster cells. 1989

S G Grant, and R G Worton
Genetics Department and Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.

Treatment with 5-azacytidine, a potent inhibitor of DNA methylation, was used to induce activation of the selectable hprt gene on the inactive X chromosome in a diploid female Chinese hamster cell line. The transformed, stably diploid cell line F3B was selected in media containing the lethal purine analogue 6-thioguanine, to generate a phenotypically HPRT- mutant, F3BT1, of presumed genotype hprt-/hprt(+), where (+) represents the presumably wild-type allele on the inactive X chromosome. Treatment of F3BT1 with 5-azacytidine resulted in phenotypic reversion to HPRT+ at a frequency greater than 10(-3). Similar treatment of 6-thioguanine-resistant control lines derived from male cells, or from CHO (which has no inactive X chromosome), had no effect on the frequency of phenotypic reversion, indicating that activation of the hprt(+) allele, rather than reversion of the hprt- is responsible. This conclusion is substantiated by documentation of the low mutagenic capacity of 5-azacytidine in this system. Proof that the hprt(+) allele can be activated by 5-azacytidine treatment was obtained in somatic cell hybrids in which hprt gene products from the active and inactive X chromosomes could be distinguished by isoelectric focusing. Our results demonstrate that X-linked gene activation associated with generalized DNA demethylation occurs with high frequency in transformed diploid Chinese hamster cells.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004171 Diploidy The chromosomal constitution of cells, in which each type of CHROMOSOME is represented twice. Symbol: 2N or 2X. Diploid,Diploid Cell,Cell, Diploid,Cells, Diploid,Diploid Cells,Diploidies,Diploids
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005260 Female Females
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

S G Grant, and R G Worton
September 1989, Somatic cell and molecular genetics,
S G Grant, and R G Worton
November 1986, Somatic cell and molecular genetics,
S G Grant, and R G Worton
February 1992, Journal of molecular biology,
S G Grant, and R G Worton
February 1995, Mammalian genome : official journal of the International Mammalian Genome Society,
S G Grant, and R G Worton
March 1986, Molecular and cellular biology,
S G Grant, and R G Worton
May 1980, Somatic cell genetics,
Copied contents to your clipboard!