Antigenic variation in African trypanosomes. 2014

David Horn
Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK. Electronic address: d.horn@dundee.ac.uk.

Studies on Variant Surface Glycoproteins (VSGs) and antigenic variation in the African trypanosome, Trypanosoma brucei, have yielded a remarkable range of novel and important insights. The features first identified in T. brucei extend from unique to conserved-among-trypanosomatids to conserved-among-eukaryotes. Consequently, much of what we now know about trypanosomatid biology and much of the technology available has its origin in studies related to VSGs. T. brucei is now probably the most advanced early branched eukaryote in terms of experimental tractability and can be approached as a pathogen, as a model for studies on fundamental processes, as a model for studies on eukaryotic evolution or often all of the above. In terms of antigenic variation itself, substantial progress has been made in understanding the expression and switching of the VSG coat, while outstanding questions continue to stimulate innovative new approaches. There are large numbers of VSG genes in the genome but only one is expressed at a time, always immediately adjacent to a telomere. DNA repair processes allow a new VSG to be copied into the single transcribed locus. A coordinated transcriptional switch can also allow a new VSG gene to be activated without any detectable change in the DNA sequence, thereby maintaining singular expression, also known as allelic exclusion. I review the story behind VSGs; the genes, their expression and switching, their central role in T. brucei virulence, the discoveries that emerged along the way and the persistent questions relating to allelic exclusion in particular.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000940 Antigenic Variation Change in the surface ANTIGEN of a microorganism. There are two different types. One is a phenomenon, especially associated with INFLUENZA VIRUSES, where they undergo spontaneous variation both as slow antigenic drift and sudden emergence of new strains (antigenic shift). The second type is when certain PARASITES, especially trypanosomes, PLASMODIUM, and BORRELIA, survive the immune response of the host by changing the surface coat (antigen switching). (From Herbert et al., The Dictionary of Immunology, 4th ed) Antigen Switching,Antigenic Diversity,Variation, Antigenic,Antigen Variation,Antigenic Switching,Antigenic Variability,Switching, Antigenic,Diversity, Antigenic,Switching, Antigen,Variability, Antigenic,Variation, Antigen
D014346 Trypanosoma brucei brucei A hemoflagellate subspecies of parasitic protozoa that causes nagana in domestic and game animals in Africa. It apparently does not infect humans. It is transmitted by bites of tsetse flies (Glossina). Trypanosoma brucei,Trypanosoma brucei bruceus,Trypanosoma bruceus,brucei brucei, Trypanosoma,brucei, Trypanosoma brucei,bruceus, Trypanosoma,bruceus, Trypanosoma brucei
D014353 Trypanosomiasis, African A disease endemic among people and animals in Central Africa. It is caused by various species of trypanosomes, particularly T. gambiense and T. rhodesiense. Its second host is the TSETSE FLY. Involvement of the central nervous system produces "African sleeping sickness." Nagana is a rapidly fatal trypanosomiasis of horses and other animals. African Sleeping Sickness,Nagana,African Trypanosomiasis,African Sleeping Sicknesses,African Trypanosomiases,Sickness, African Sleeping,Sicknesses, African Sleeping,Sleeping Sickness, African,Sleeping Sicknesses, African,Trypanosomiases, African
D014643 Variant Surface Glycoproteins, Trypanosoma Glycoproteins attached to the surface coat of the trypanosome. Many of these glycoproteins show amino acid sequence diversity expressed as antigenic variations. This continuous development of antigenically distinct variants in the course of infection ensures that some trypanosomes always survive the development of immune response to propagate the infection. Surface Variant Glycoproteins, Trypanosoma,Trypanosoma Variant Surface Coat Glycoproteins,SSP-4,VSG 117,VSG 118,VSG 221

Related Publications

David Horn
June 1994, Science (New York, N.Y.),
David Horn
December 1992, Trends in genetics : TIG,
David Horn
January 1987, Contributions to microbiology and immunology,
David Horn
January 1985, Annual review of microbiology,
David Horn
January 1990, Annales de parasitologie humaine et comparee,
David Horn
April 1991, The New biologist,
David Horn
January 1993, Cold Spring Harbor symposia on quantitative biology,
David Horn
March 1997, Behring Institute Mitteilungen,
David Horn
January 1991, Research in microbiology,
David Horn
March 2004, Trends in parasitology,
Copied contents to your clipboard!