Carbohydrate-functionalized locked nucleic acids: oligonucleotides with extraordinary binding affinity, target specificity, and enzymatic stability. 2014

Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
Department of Chemistry, University of Idaho , Moscow, Idaho 83844-2343, United States.

Three different C5-carbohydrate-functionalized LNA uridine phosphoramidites were synthesized and incorporated into oligodeoxyribonucleotides. C5-Carbohydrate-functionalized LNA display higher affinity toward complementary DNA/RNA targets (ΔTm/modification up to +11.0 °C), more efficient discrimination of mismatched targets, and superior resistance against 3'-exonucleases compared to conventional LNA. These properties render C5-carbohydrate-functionalized LNAs as promising modifications in antisense technology and other nucleic acid targeting applications.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D002241 Carbohydrates A class of organic compounds composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n. The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrate
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D014529 Uridine A ribonucleoside in which RIBOSE is linked to URACIL. Allo-Uridine,Allouridine,Allo Uridine
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense

Related Publications

Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
February 2023, Organic & biomolecular chemistry,
Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
May 1967, Stain technology,
Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
December 2011, Chemical Society reviews,
Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
May 2015, Organic & biomolecular chemistry,
Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
May 2000, Proceedings of the National Academy of Sciences of the United States of America,
Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
November 2004, Current drug targets,
Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
June 2008, The Biochemical journal,
Mamta Kaura, and Dale C Guenther, and Patrick J Hrdlicka
May 2002, Nucleic acids research,
Copied contents to your clipboard!