Genetic parameters and breeding values for semen characteristics in Hanoverian stallions. 2014

D Labitzke, and H Sieme, and G Martinsson, and O Distl
Institute of Animal Breeding and Genetics, Hannover, Germany.

The objectives of this study were to show whether semen traits of 30 Hanoverian stallions regularly used in AI may be useful for breeding purposes. Semen characteristics were studied using 15 149 ejaculates from 30 Hanoverian stallions of the State Stud Celle of Lower Saxony. Semen samples were collected between 2005 and 2009. Traits analysed were gel-free volume, sperm concentration, total and motile sperm number and progressive motility. A linear multivariate animal model was employed to estimate heritabilities and permanent environmental variances for stallions. The same model was used to predict breeding values for all traits simultaneously. Heritabilities were high for gel-free volume (h(2) = 0.43) and moderate for total number of sperm (h(2) = 0.29) and progressive motility (h(2) = 0.20). Gel-free volume, sperm concentration and total number of sperm were genetically negatively correlated with progressive motility. The effect of the permanent environment for stallions accounted for 9-55% of the trait variance. The total variance among stallions explained 37-69% of the trait variance. The average reliabilities of the breeding values were 0.43-0.76 for the 30 Hanoverian stallions. In conclusion, the study could demonstrate large effects of stallions, routinely employed in a breeding programme, on semen characteristics analysed here. We could demonstrate that estimated breeding values (EBV) with sufficient high reliabilities can be predicted using data from these stallions and these EBV are useful in horse breeding programmes to achieve genetic improvement in semen quality.

UI MeSH Term Description Entries
D007315 Insemination, Artificial Artificial introduction of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION. Artificial Insemination,Eutelegenesis,Artificial Inseminations,Eutelegeneses,Inseminations, Artificial
D008297 Male Males
D001947 Breeding The production of offspring by selective mating or HYBRIDIZATION, GENETIC in animals or plants. Breedings
D006736 Horses Large, hoofed mammals of the family EQUIDAE. Horses are active day and night with most of the day spent seeking and consuming food. Feeding peaks occur in the early morning and late afternoon, and there are several daily periods of rest. Equus caballus,Equus przewalskii,Horse, Domestic,Domestic Horse,Domestic Horses,Horse,Horses, Domestic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D013076 Sperm Count A count of SPERM in the ejaculum, expressed as number per milliliter. Sperm Number,Count, Sperm,Counts, Sperm,Number, Sperm,Numbers, Sperm,Sperm Counts,Sperm Numbers
D013081 Sperm Motility Movement characteristics of SPERMATOZOA in a fresh specimen. It is measured as the percentage of sperms that are moving, and as the percentage of sperms with productive flagellar motion such as rapid, linear, and forward progression. Motilities, Sperm,Motility, Sperm,Sperm Motilities
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic

Related Publications

D Labitzke, and H Sieme, and G Martinsson, and O Distl
November 2019, Animal reproduction science,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
February 2022, Animals : an open access journal from MDPI,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
October 1975, Journal of reproduction and fertility. Supplement,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
February 2017, Theriogenology,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
January 2009, Berliner und Munchener tierarztliche Wochenschrift,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
May 1994, Journal of reproduction and fertility,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
April 2021, Journal of equine veterinary science,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
March 2009, Genetics, selection, evolution : GSE,
D Labitzke, and H Sieme, and G Martinsson, and O Distl
April 1995, The Journal of veterinary medical science,
Copied contents to your clipboard!