Sirt1, a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy. 2014

Renu A Kowluru, and Julia M Santos, and Qing Zhong
Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States.

OBJECTIVE In the pathogenesis of diabetic retinopathy, matrix metalloproteinase (MMP)-9 damages retinal mitochondria, activating the apoptotic machinery. Transcription of MMP-9 is regulated by nuclear factor kappa B (NF-κB), and the activation of NF-κB is modulated by the acetylation of its p65 subunit. Sirtuin 1 (Sirt1), a deacetylase, plays an important role in the acetylation-deacetylation of p65. The goal of this study is to investigate the role of Sirt1 in the activation of MMP-9 in diabetic retinopathy. METHODS The effect of hyperglycemia and Sirt1 activator, resveratrol, on acetylation of p65 and its binding at MMP-9 promoter-and mitochondrial damage and apoptosis-was assessed in the retinal endothelial cells. Role of oxidative stress in the regulation of Sirt1 was evaluated in the cells incubated in H2O2. The results were confirmed in the retina from diabetic mice with Sod2 or MMP-9 gene manipulated. RESULTS High glucose decreased Sirt1 activity and increased p65 acetylation, and resveratrol prevented increase in p65 acetylation, binding of p65 at MMP-9 promoter and MMP-9 activation, mitochondria damage, and cell apoptosis. While Sirt1 was decreased by H2O2, MMP-9 was significantly increased. Retina from wild-type diabetic mice presented similar decrease in Sirt1, and diabetic mice with Sod2 overexpression or MMP-9 deletion had normal retinal Sirt1. Retinal microvasculature from human donors with established diabetic retinopathy also had decreased Sirt1. CONCLUSIONS Thus, in diabetes, increase in oxidative stress inhibits Sirt1 and p65 is hyperacetylated, increasing the binding of p65 at MMP-9 promoter. Prevention of Sirt1 inhibition, via modulating acetylation of p65, should protect activation of MMP-9 and inhibit the development of diabetic retinopathy.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D003930 Diabetic Retinopathy Disease of the RETINA as a complication of DIABETES MELLITUS. It is characterized by the progressive microvascular complications, such as ANEURYSM, interretinal EDEMA, and intraocular PATHOLOGIC NEOVASCULARIZATION. Diabetic Retinopathies,Retinopathies, Diabetic,Retinopathy, Diabetic
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005260 Female Females
D006655 Histone Deacetylases Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes. Class I Histone Deacetylases,Class II Histone Deacetylases,HDAC Proteins,Histone Deacetylase,Histone Deacetylase Complexes,Complexes, Histone Deacetylase,Deacetylase Complexes, Histone,Deacetylase, Histone,Deacetylases, Histone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Renu A Kowluru, and Julia M Santos, and Qing Zhong
September 2014, Investigative ophthalmology & visual science,
Renu A Kowluru, and Julia M Santos, and Qing Zhong
September 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Renu A Kowluru, and Julia M Santos, and Qing Zhong
December 2010, Experimental dermatology,
Renu A Kowluru, and Julia M Santos, and Qing Zhong
March 2012, Journal of cellular physiology,
Renu A Kowluru, and Julia M Santos, and Qing Zhong
August 2016, Journal of cellular physiology,
Renu A Kowluru, and Julia M Santos, and Qing Zhong
October 2016, Laboratory investigation; a journal of technical methods and pathology,
Renu A Kowluru, and Julia M Santos, and Qing Zhong
March 2012, Journal of ocular biology, diseases, and informatics,
Renu A Kowluru, and Julia M Santos, and Qing Zhong
June 2019, Experimental and molecular pathology,
Copied contents to your clipboard!