Phase based venous suppression in resting-state BOLD GE-fMRI. 2014

Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 100 Perth Drive, London, Ontario, N6A 5K8, Canada; Department of Medical Biophysics, The University of Western Ontario, London, Ontario, N6A 5C1, Canada.

Resting-state functional MRI (RS-fMRI) is a widely used method for inferring connectivity between brain regions or nodes. As with task-based fMRI, the spatial specificity of the connectivity maps can be distorted by the strong biasing effect of the BOLD signal in macroscopic veins. In RS-fMRI this effect is exacerbated by the temporal coherences of physiological origin between large veins that are widely distributed in the brain. In gradient echo based EPI, used for the vast majority of RS-fMRI, macroscopic veins that carry BOLD-related changes exhibit a strong phase response. This allows for post-processing identification and removal of venous signals using a phase regressor technique. Here, we employ this approach to suppress macrovascular venous contributions in high-field whole-brain RS-fMRI data sets, resulting in significant changes to both the spatial localization of the networks and the correlations between the network nodes. These effects were observed at both the individual and group analysis level, suggesting that venous contamination is a confounding factor for RS-fMRI studies even at relatively low image resolutions. Suppression of the macrovascular signal using the phase regression approach may therefore help to better identify, delineate, and interpret the true structure of large-scale brain networks.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002550 Cerebral Veins Veins draining the cerebrum. Basal Vein,Pial Vein,Sylvian Vein,Thalamostriate Vein,Vein of Galen,Terminal Vein,Basal Veins,Cerebral Vein,Galen Vein,Pial Veins,Terminal Veins,Thalamostriate Veins,Vein, Basal,Vein, Cerebral,Vein, Pial,Vein, Sylvian,Vein, Terminal,Vein, Thalamostriate,Veins, Basal,Veins, Cerebral,Veins, Pial,Veins, Terminal,Veins, Thalamostriate
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D055815 Young Adult A person between 19 and 24 years of age. Adult, Young,Adults, Young,Young Adults

Related Publications

Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
January 2015, Bio-medical materials and engineering,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
July 2013, NeuroImage,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
July 2023, NeuroImage,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
January 2012, Frontiers in systems neuroscience,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
January 2018, NeuroImage. Clinical,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
January 2013, PloS one,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
June 2022, Magnetic resonance imaging,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
October 2009, NeuroImage,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
September 2018, Journal of the neurological sciences,
Andrew T Curtis, and R Matthew Hutchison, and Ravi S Menon
May 2024, Brain connectivity,
Copied contents to your clipboard!