Hypothalamic molecular changes underlying natural reproductive senescence in the female rat. 2014

Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
Institute for Neuroscience (B.A.K., A.C.G.), Division of Pharmacology and Toxicology (P.D.R., A.C.G.), and Institute for Cell and Molecular Biology (A.C.G.), The University of Texas at Austin, Austin, Texas 78712; Department of Biology (M.J.W.), University of Wisconsin-Whitewater, Whitewater, Wisconsin 53190; and Department of Pediatrics (A.W.), Johns Hopkins University School of Medicine, Baltimore Maryland 21287.

The role of the hypothalamus in female reproductive senescence is unclear. Here we identified novel molecular neuroendocrine changes during the natural progression from regular reproductive cycles to acyclicity in middle-aged female rats, comparable with the perimenopausal progression in women. Expression of 48 neuroendocrine genes was quantified within three hypothalamic regions: the anteroventral periventricular nucleus, the site of steroid positive feedback onto GnRH neurons; the arcuate nucleus (ARC), the site of negative feedback and pulsatile GnRH release; and the median eminence (ME), the site of GnRH secretion. Surprisingly, the majority of changes occurred in the ARC and ME, with few effects in anteroventral periventricular nucleus. The overall pattern was increased mRNA levels with chronological age and decreases with reproductive cycle status in middle-aged rats. Affected genes included transcription factors (Stat5b, Arnt, Ahr), sex steroid hormone receptors (Esr1, Esr2, Pgr, Ar), steroidogenic enzymes (Sts, Hsd17b8), growth factors (Igf1, Tgfa), and neuropeptides (Kiss1, Tac2, Gnrh1). Bionetwork analysis revealed region-specific correlations between genes and hormones. Immunohistochemical analyses of kisspeptin and estrogen receptor-α in the ARC demonstrated age-related decreases in kisspeptin cell numbers as well as kisspeptin-estrogen receptor-α dual-labeled cells. Taken together, these results identify unexpectedly strong roles for the ME and ARC during reproductive decline and highlight fundamental differences between middle-aged rats with regular cycles and all other groups. Our data provide evidence of decreased excitatory stimulation and altered hormone feedback with aging and suggest novel neuroendocrine pathways that warrant future study. Furthermore, these changes may impact other neuroendocrine systems that undergo functional declines with age.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D012098 Reproduction The total process by which organisms produce offspring. (Stedman, 25th ed) Human Reproductive Index,Human Reproductive Indexes,Reproductive Period,Human Reproductive Indices,Index, Human Reproductive,Indexes, Human Reproductive,Indices, Human Reproductive,Period, Reproductive,Periods, Reproductive,Reproductive Index, Human,Reproductive Indices, Human,Reproductive Periods
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
January 1978, Advances in experimental medicine and biology,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
December 1964, The Anatomical record,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
September 2002, Endocrinology,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
January 2015, Fertility and sterility,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
June 1995, Biology of reproduction,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
December 2000, Endocrine,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
April 2020, Aging,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
June 2019, Nature communications,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
January 1978, Birth defects original article series,
Bailey A Kermath, and Penny D Riha, and Michael J Woller, and Andrew Wolfe, and Andrea C Gore
January 1993, Peptides,
Copied contents to your clipboard!