Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. 1989

C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
Unitat de Bioquímica, Facultat de Farmàcia, Universitat de Barcelona, Spain.

The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) catalyses the synthesis of mevalonate, the specific precursor of all isoprenoid compounds present in plants. We have characterized two overlapping cDNA clones that encompass the entire transcription unit of an HMG-CoA reductase gene from Arabidopsis thaliana. The transcription product has an upstream non-coding sequence of 70 nucleotides preceding an open reading frame of 1776 bases and a 3' untranslated region in which two alternative polyadenylation sites have been found. The analysis of the nucleotide sequence reveals that the cDNA encodes a polypeptide of 592 residues with a molecular mass of 63,605 Da. The hydropathy profile of the protein indicates the presence of two highly hydrophobic domains near the N-terminus. A sequence of 407 amino acids corresponding to the C-terminal part of the protein (residues 172-579), which presumably contains the catalytic site, shows a high level of similarity to the region containing the catalytic site of the hamster, human, yeast and Drosophila enzymes. The N-terminal domain contains two putative membrane-spanning regions, in contrast to the enzyme from other organisms which has seven trans-membrane regions. A. thaliana contains two different HMG-CoA reductase genes (HMG1 and HMG2), as estimated by gene cloning and Southern blot analysis. Northern blot analysis reveals a single transcript of 2.4 kb in leaves and seedlings, which presumably corresponds to the expression of the HMG1 gene.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006903 Hydroxymethylglutaryl CoA Reductases Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID. HMG CoA Reductases,3-Hydroxy-3-methylglutaryl CoA Reductase,HMG CoA Reductase,Hydroxymethylglutaryl CoA Reductase,3 Hydroxy 3 methylglutaryl CoA Reductase,CoA Reductase, 3-Hydroxy-3-methylglutaryl,Reductase, 3-Hydroxy-3-methylglutaryl CoA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
December 1995, Gene,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
October 1992, Plant molecular biology,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
June 1993, Plant physiology,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
April 1991, Plant molecular biology,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
February 1996, Plant physiology,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
November 1992, Plant physiology,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
January 2005, Plant physiology,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
October 2011, Omics : a journal of integrative biology,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
August 1982, Biochemical and biophysical research communications,
C Caelles, and A Ferrer, and L Balcells, and F G Hegardt, and A Boronat
April 1984, Archives of biochemistry and biophysics,
Copied contents to your clipboard!