Oxazaphosphorine cytostatics: past-present-future. Seventh Cain Memorial Award lecture. 1989

N Brock
Department of Cancer Research, ASTA Pharma AG, Bielefeld, Federal Republic of Germany.

The development of the oxazaphosphorine cytostatics cyclophosphamide, ifosfamide, and trofosfamide was based on the idea of applying the transport form/active form principle to the highly reactive nitrogen mustard group. A critical analysis and synopsis of the available results and knowledge will include examination of the extent to which the hypotheses on which this concept is based have been confirmed by experimental and clinical findings: 1. Chemical synthesis succeeded in converting the reactive nitrogen mustard into an inactive transport form (latentiation). 2. The requirement that the transport form be enzymatically activated to the active form in the target organ (the cancer cell) has been achieved by a sequence of metabolic reactions. 3. The aim of considerably increasing the therapeutic index of alkylating agents has been achieved by the oxazaphosphorine cytostatics. The greater cancerotoxic selectivity is closely correlated with the cytotoxic specificity of their activated primary metabolites. 4. The cancerotoxic selectivity of oxazaphosphorines was further increased when mesna was introduced as a regional uroprotector. Mesna eliminates the risk of therapy-limiting urotoxic side effects of oxazaphosphorines. With mesna protection, these cytostatics can be given in higher doses with increased safety, and their therapeutic efficacy can be enhanced. 5. Stabilization of the primary oxazaphosphorines, e.g., by attaching 2-mercaptoethanesulfonic acid (mafosfamide), opens up new possibilities in preclinical investigations and in therapy, e.g., for the clonogenic stem cell assay, for in vitro purging in autologous bone marrow transplantation, for regional perfusion of tumors, and, in small doses, for immunomodulation, where appropriate, in conjunction with "biological response modifiers."

UI MeSH Term Description Entries
D007069 Ifosfamide Positional isomer of CYCLOPHOSPHAMIDE which is active as an alkylating agent and an immunosuppressive agent. Isofosfamide,Isophosphamide,Asta Z 4942,Holoxan,Iphosphamide,Iso-Endoxan,NSC-109,724,NSC-109724,Iso Endoxan,NSC 109,724,NSC 109724,NSC109,724,NSC109724
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D015080 Mesna A sulfhydryl compound used to prevent urothelial toxicity by inactivating metabolites from ANTINEOPLASTIC AGENTS, such as IFOSFAMIDE or CYCLOPHOSPHAMIDE. 2-Mercaptoethanesulfonate,Coenzyme M,Ethanesulfonic acid, 2-mercapto-, monosodium salt,ASTA-D 7093,MESNA-cell,Mesnex,Mesnum,Mistabron,Mistabronco,Mitexan,Mucofluid,Sodium 2-Mercaptoethanesulphonate,UCB-3983,Uromitexan,Ziken,2 Mercaptoethanesulfonate,2-Mercaptoethanesulphonate, Sodium,ASTA D 7093,ASTAD 7093,MESNA cell,UCB 3983,UCB3983

Related Publications

Copied contents to your clipboard!