Steric hindrance between S4 and S5 of the KCNQ1/KCNE1 channel hampers pore opening. 2014

Koichi Nakajo, and Yoshihiro Kubo
1] Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan [2] Department of Physiological Sciences, Hayama, Kanagawa 240-0193, Japan.

In voltage-gated K(+) channels, membrane depolarization induces an upward movement of the voltage-sensing domains (VSD) that triggers pore opening. KCNQ1 is a voltage-gated K(+) channel and its gating behaviour is substantially modulated by auxiliary subunit KCNE proteins. KCNE1, for example, markedly shifts the voltage dependence of KCNQ1 towards the positive direction and slows down the activation kinetics. Here we identify two phenylalanine residues on KCNQ1, Phe232 on S4 (VSD) and Phe279 on S5 (pore domain) to be responsible for the gating modulation by KCNE1. Phe232 collides with Phe279 during the course of the VSD movement and hinders KCNQ1 channel from opening in the presence of KCNE1. This steric hindrance caused by the bulky amino-acid residues destabilizes the open state and thus shifts the voltage dependence of KCNQ1/KCNE1 channel.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D051657 KCNQ1 Potassium Channel A voltage-gated potassium channel that is expressed primarily in the HEART. KCNQ1 Protein,KVLQT1 Protein,Kv7.1 Potassium Channel,Voltage-Gated K+ Channel KCNQ1,Potassium Channel, KCNQ1,Potassium Channel, Kv7.1,Voltage Gated K+ Channel KCNQ1
D020816 Amino Acid Motifs Three-dimensional protein structural elements that are composed of a combination of secondary structures. They include HELIX-LOOP-HELIX MOTIFS and ZINC FINGERS. Motifs are typically the most conserved regions of PROTEIN DOMAINS and are critical for domain function. However, the same motif may occur in proteins or enzymes with different functions. AA Motifs,Motifs, Amino Acid,Protein Motifs,Protein Structure, Supersecondary,Supersecondary Protein Structure,AA Motif,Amino Acid Motif,Motif, AA,Motif, Amino Acid,Motif, Protein,Motifs, AA,Motifs, Protein,Protein Motif,Protein Structures, Supersecondary,Supersecondary Protein Structures
D024642 Potassium Channels, Voltage-Gated Potassium channel whose permeability to ions is extremely sensitive to the transmembrane potential difference. The opening of these channels is induced by the membrane depolarization of the ACTION POTENTIAL. Voltage-Gated Potassium Channels,Kv Potassium Channels,Potassium Channel, Voltage-Gated,Voltage-Gated K+ Channels,Voltage-Gated Potassium Channel,K+ Channels, Voltage-Gated,Potassium Channel, Voltage Gated,Potassium Channels, Kv,Potassium Channels, Voltage Gated,Voltage Gated K+ Channels,Voltage Gated Potassium Channel,Voltage Gated Potassium Channels

Related Publications

Koichi Nakajo, and Yoshihiro Kubo
January 2016, Acta pharmacologica Sinica,
Koichi Nakajo, and Yoshihiro Kubo
January 2015, Biochemical and biophysical research communications,
Koichi Nakajo, and Yoshihiro Kubo
June 2004, Neuron,
Koichi Nakajo, and Yoshihiro Kubo
January 2009, PloS one,
Koichi Nakajo, and Yoshihiro Kubo
January 2020, Frontiers in physiology,
Koichi Nakajo, and Yoshihiro Kubo
January 2011, The Journal of biological chemistry,
Koichi Nakajo, and Yoshihiro Kubo
September 2012, Proceedings of the National Academy of Sciences of the United States of America,
Koichi Nakajo, and Yoshihiro Kubo
October 1997, Biophysical journal,
Koichi Nakajo, and Yoshihiro Kubo
February 2013, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!