Growth factors, signaling pathways, and the regulation of proliferation and differentiation in BC3H1 muscle cells. II. Two signaling pathways distinguished by pertussis toxin and a potential role for the ras oncogene. 1989

D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
Department of Anatomy, University of Toronto, Canada.

In the preceding report (Kelvin, D.J., G. Simard, H.H. Tai, T.P. Yamaguchi, and J.A. Connolly. 1989. J. Cell Biol. 108:159-167) we demonstrated that pertussis toxin (PT) blocked proliferation and induced differentiation in BC3H1 muscle cells. In the present study, we have used PT to examine specific growth factor signaling pathways that may regulate these processes. Inhibition of [3H]thymidine by PT in 20% FBS was reversed in a dose-dependent fashion by purified fibroblast growth factor (FGF). In 0.5% FBS, the normally induced increase in creatine kinase (CK) activity was blocked by FGF in both the presence and absence of PT. Similar results were obtained with purified epidermal growth factor (EGF). We subsequently examined the effect of a family of growth factors linked to inositol lipid hydrolysis and found that thrombin, like FGF, would increase [3H]thymidine incorporation and block CK synthesis. However, PT blocked thymidine incorporation induced by thrombin, and blocked the inhibition of CK turn-on in 0.5% FBS by thrombin. The ras oncogene, a G protein homologue, has previously been shown to block muscle cell differentiation in C2 muscle cells (Olson, E.N., G. Spizz, and M.A. Tainsky. 1987. Mol. Cell. Biol. 7:2104-2111); we have characterized a BC3H1 cell line, BCT31, which we transfected with the val12 oncogenic Harvey ras gene. This cell line did not express CK in response to serum deprivation. Whereas [3H]thymidine incorporation was inhibited by 70-80% by increasing doses of PT in control cells, BCT31 cells were only inhibited by 15-20%. ADP ribosylation studies indicate this PT-insensitivity is not because of the lack of a PT substrate in this cell line. Furthermore, PT could not induce CK expression in BCT31 cells as it did in parental cells. We conclude that there are at least two distinct growth factor pathways that play a key role in regulating proliferation and differentiation in BC3H1 muscle cells, one of which is PT sensitive, and postulate that a G protein is involved in transducing signals from the thrombin receptor. We believe that ras functions in the transduction of growth factor signals in the nonPT-sensitive pathway or downstream from the PT substrate in the second pathway.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast

Related Publications

D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
January 1987, Nature,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
June 1991, Seikagaku. The Journal of Japanese Biochemical Society,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
February 1987, The Journal of biological chemistry,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
July 1987, Somatic cell and molecular genetics,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
March 1989, Environmental health perspectives,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
December 1988, The Journal of biological chemistry,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
May 1985, The Journal of cell biology,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
March 2000, Molecular and cellular neurosciences,
D J Kelvin, and G Simard, and A Sue-A-Quan, and J A Connolly
August 1997, Molecular and cellular biology,
Copied contents to your clipboard!