In vitro effects of sulfonylurea on glucose transport and translocation of glucose transporters in adipocytes from streptozocin-induced diabetic rats. 1989

D B Jacobs, and G R Hayes, and D H Lockwood
Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642.

The in vitro effects of the sulfonylurea glyburide on insulin binding and action were compared in adipocytes from control and nonketotic streptozocin-induced diabetic rats. Adipose tissue from control and diabetic animals was maintained in the absence or presence of 2 micrograms/ml glyburide for 20 h. Insulin binding and insulin-stimulated glucose transport were examined in adipocytes prepared from this tissue. As expected, insulin binding was increased in adipocytes from diabetic animals. Exposure of tissue to glyburide did not influence insulin binding in either control or diabetic cells. Glucose transport activity of diabetic cells, assessed with 2-deoxyglucose, was decreased 30-40% in both the absence (basal) and presence of insulin compared with controls. Glyburide potentiated insulin's effects in both control (15-20%) and diabetic (30-40%) adipocytes. As a result, glucose transport activity in glyburide-treated diabetic cells was restored to a level similar to that of control cells not exposed to the drug. The mechanism by which glyburide potentiated glucose transport activity was examined with the D-glucose-displaceable cytochalasin B-binding technique to measure glucose-transporter concentration in membranes prepared from control and diabetic adipocytes exposed to the drug. Adipocytes from this model of diabetes are known to have a decreased cellular content of glucose transporters. The concentration of glucose transporters was decreased by 31% in plasma membranes from insulin-treated diabetic cells. There were corresponding decreases in diabetic microsomal and total membrane fractions. There was also a 40% decrease in the translocation of transporters from the microsomes to the plasma membrane in response to insulin in diabetic cells.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003571 Cytochalasin B A cytotoxic member of the CYTOCHALASINS. Phomin
D003837 Deoxy Sugars Sugars that in which one or more hydroxyl groups of the pyranose or furanose ring is substituted by hydrogen. Deoxy Sugar,Sugar, Deoxy,Sugars, Deoxy
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose

Related Publications

D B Jacobs, and G R Hayes, and D H Lockwood
March 1985, The Journal of biological chemistry,
D B Jacobs, and G R Hayes, and D H Lockwood
September 1987, Diabetes,
D B Jacobs, and G R Hayes, and D H Lockwood
October 1990, The American journal of physiology,
D B Jacobs, and G R Hayes, and D H Lockwood
November 1985, The Biochemical journal,
D B Jacobs, and G R Hayes, and D H Lockwood
April 2010, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
D B Jacobs, and G R Hayes, and D H Lockwood
July 2003, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP,
Copied contents to your clipboard!