Functional homology of chemotactic methylesterases from Bacillus subtilis and Escherichia coli. 1989

D O Nettleton, and G W Ordal
Department of Biochemistry, University of Illinois, Urbana 61801.

The methylesterase enzyme from Bacillus subtilis was compared with that from Escherichia coli. Both enzymes were able to demethylate methyl-accepting chemotaxis proteins (MCPs) from the other organism and were similarly affected by variations in glycerol, magnesium ion, or pH. When attractants were added to a mixture of B. subtilis MCPs and E. coli methylesterase, the rate of demethylation was enhanced. Conversely, when attractants were added to a mixture of E. coli MCPs and B. subtilis methylesterase, the rate of demethylation was diminished. These effects are what would be expected if, in these in vitro systems, the MCPs determined the rate of demethylation. These data suggest that, although the enzymes are from evolutionarily divergent organisms and are different in size, they have considerable functional homology.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002265 Carboxylic Ester Hydrolases Enzymes which catalyze the hydrolysis of carboxylic acid esters with the formation of an alcohol and a carboxylic acid anion. Carboxylesterases,Ester Hydrolases, Carboxylic,Hydrolases, Carboxylic Ester
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

D O Nettleton, and G W Ordal
November 1982, The Journal of biological chemistry,
D O Nettleton, and G W Ordal
December 1996, Gene,
D O Nettleton, and G W Ordal
January 1971, Journal of bacteriology,
D O Nettleton, and G W Ordal
February 1978, Journal of bacteriology,
D O Nettleton, and G W Ordal
March 1993, Molecular microbiology,
D O Nettleton, and G W Ordal
September 1991, Journal of general microbiology,
D O Nettleton, and G W Ordal
January 1976, Journal of molecular biology,
D O Nettleton, and G W Ordal
January 1992, Molecular microbiology,
Copied contents to your clipboard!