Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. 1989

A L Hughes, and M Nei
Center for Demographic and Population Genetics, University of Texas Health Science Center, Houston 77225.

To study the mechanism of maintenance of polymorphism at major histocompatibility complex (MHC) loci, synonymous and nonsynonymous (amino acid-altering) nucleotide substitutions in the putative antigen-recognition site (included in the first domain of the MHC molecule) and other regions of human and mouse class II genes were examined. In the putative antigen-recognition site, the rate of nonsynonymous substitution was found to exceed that of synonymous substitution, whereas in the second domain the former was significantly lower than the latter. In light of a previous theoretical study and parallel findings in class I MHC loci, we conclude that the unusually high degree of polymorphism at class II MHC loci is caused mainly by overdominant selection (heterozygote advantage) operating in the antigen-recognition site.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant
D005802 Genes, MHC Class II Genetic loci in the vertebrate major histocompatibility complex that encode polymorphic products which control the immune response to specific antigens. The genes are found in the HLA-D region in humans and include H-2M, I-A, and I-E loci in mice. Class II Genes,Genes, Class II,Genes, HLA Class II,MHC Class II Genes,Class II Gene,Gene, Class II
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

A L Hughes, and M Nei
October 1996, Animal genetics,
A L Hughes, and M Nei
December 1998, Immunological reviews,
A L Hughes, and M Nei
January 1998, Annual review of genetics,
A L Hughes, and M Nei
December 1988, Bailliere's clinical rheumatology,
A L Hughes, and M Nei
July 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!