Cerebral muscarinic acetylcholine receptors interact with three kinds of GTP-binding proteins in a reconstitution system of purified components. 1989

K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
Department of Biochemistry, Hamamatsu University School of Medicine, Japan.

A new GTP-binding protein, which serves as a substrate for pertussis toxin, was prepared from porcine brain. The new G protein was separated from other GTP-binding proteins, Gi and Go, by an anion-exchange column chromatography. The mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the alpha subunit of the new G protein was between those of alpha subunits of Gi and Go. Evidence that the alpha subunit is not a proteolytic fragment of the alpha subunit is not a proteolytic fragment of the alpha subunit of Gi or Go was provided by experiments involving partial hydrolysis of these G proteins with thermolysin and their interaction with an antibody raised against the amino terminal peptide of the alpha subunit of Gi. In addition, the gamma subunit of the new G protein was indicated to be different from the gamma subunits of Gi and Go, because the latter were found to be phosphorylated by protein kinase C but the former was not. GTP-sensitive high affinity binding of muscarinic receptors with acetylcholine was observed when muscarinic receptors purified from porcine cerebrum were reconstituted in phospholipid vesicles with the new G protein as well as with Gi or Go. The proportion of the high affinity sites increased with the concentrations of the G proteins, the potency of the new G protein being similar to that of Gi but a little lower than that of Go. This GTP-sensitive high affinity binding was not observed when each G protein was pretreated with pertussis toxin and then reconstituted with muscarinic receptors. Acetylcholine accelerated the dissociation of [3H]GDP from the new G protein as well as from Gi and Go, which were reconstituted with muscarinic receptors. These results indicate that muscarinic receptors interact with at least the above three kinds of G proteins, in a pertussis toxin-sensitive manner.

UI MeSH Term Description Entries
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011813 Quinuclidinyl Benzilate A high-affinity muscarinic antagonist commonly used as a tool in animal and tissue studies. Benzilate, Quinuclidinyl
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory

Related Publications

K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
March 1985, The Journal of biological chemistry,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
March 1990, Journal of molecular and cellular cardiology,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
December 1996, Journal of biochemistry,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
October 1988, Biochemical and biophysical research communications,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
January 1993, Advances in peritoneal dialysis. Conference on Peritoneal Dialysis,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
January 1998, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
July 1996, Journal of biochemistry,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
January 1985, Nature,
K Haga, and H Uchiyama, and T Haga, and A Ichiyama, and K Kangawa, and H Matsuo
December 1987, Biochemistry,
Copied contents to your clipboard!