Molecular analysis of spontaneous mutations at the gpt locus in Chinese hamster ovary (AS52) cells. 1989

K R Tindall, and L F Stankowski
Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709.

AS52 cells are Chinese hamster ovary (CHO) cells that carry a single functional copy of the bacterial gpt gene and allow the isolation of 6-thioguanine-resistant (6TGr)mutants arising from mutation at the chromosally integrated gpt locus. The gpt locus in AS52 cells is extremely stable, giving rise to 6TGr mutants at frequencies comparable to the endogenous CHO hprt locus. In this study, we describe the spectrum of spontaneous mutations observed in AS52 cells by Southern blot and DNA sequence analyses. Using the polymerase chain reaction (PCR) and the Thermus aquaticus (Taq) polymerase, we have enzymatically amplified 6TGr mutant gpt sequences in vitro. The PCR product was then sequenced without further cloning manipulations to directly identify gpt structural gene mutations. Deletions predominant among the 62 spontaneous 6TGr-AS52 mutant clones analyzed in this study. Of these, 79% (49/62) of the mutations were identified as deletions either by Southern blotting, PCR amplification or DNA sequence analysis. Among these deletions is a predominant 3-base deletion that was observed in 31% (19/62) of the mutants. These data provide a basis for future comparisons of induced point mutational spectra derived in the AS52 cell line, and demonstrate the utility of PCR in the generation of DNA sequence spectra derived from chromosomally integrated mammalian loci.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010430 Pentosyltransferases Enzymes of the transferase class that catalyze the transfer of a pentose group from one compound to another.
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

K R Tindall, and L F Stankowski
October 1997, Yi chuan xue bao = Acta genetica Sinica,
K R Tindall, and L F Stankowski
June 1986, Molecular and cellular biology,
K R Tindall, and L F Stankowski
June 2011, Bulletin of environmental contamination and toxicology,
K R Tindall, and L F Stankowski
May 1988, Proceedings of the National Academy of Sciences of the United States of America,
K R Tindall, and L F Stankowski
April 1987, Molecular and cellular biology,
Copied contents to your clipboard!