Hyaluronic acid-decorated reconstituted high density lipoprotein targeting atherosclerotic lesions. 2014

Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.

The primary aim of our current study was to utilize hyaluronic acid (HA) to decorate reconstituted high density lipoprotein (rHDL) loaded with lovastatin (LT), termed as HA-LT-rHDL, in order to investigate whether coating HA could efficiently evade from the undesired uptake of LT-rHDL in liver mediated by scavenger receptor class B type I (SR-BI) and then greatly accumulate LT-rHDL in atherosclerotic lesions via strong HA affinity to CD44 up-regulated at inflammatory sites such as atherosclerotic lesions, thus exerting enhanced atheroprotective efficacy. In vitro characterizations indicated the successful HA decoration onto the surface of LT-rHDL, which could be indirectly verified by the increased particle size, enhanced negative surface charge and reduced in vitro drug release rate after HA decoration. Compared with rHDL without HA, HA decoration endowed rHDL with better atherosclerotic lesions targeting efficiency and lower liver accumulation, proved by results from ex vivo imaging and tissue distribution. Furthermore, atheroprotective efficacy in model animal showed that HA-LT-rHDL had the best potent efficacy than other LT preparations, which was demonstrated by the fewest atherosclerotic lesions sizes, the most minimum mean intima-media thickness (MIT), the lowest macrophage infiltration and expression of matrix metalloproteinase-9 (MMP-9), respectively. Above results demonstrated that the newly designed HA-LT-rHDL could decrease the non-targeted uptake by liver and deliver a large amount of drug into atherosclerotic lesions so as to efficiently suppress the advancement of atherosclerosis.

UI MeSH Term Description Entries
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008148 Lovastatin A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver. Lovastatin, 1 alpha-Isomer,Mevinolin,6-Methylcompactin,Lovastatin, (1 alpha(S*))-Isomer,MK-803,Mevacor,Monacolin K,1 alpha-Isomer Lovastatin,6 Methylcompactin,Lovastatin, 1 alpha Isomer,MK 803,MK803,alpha-Isomer Lovastatin, 1
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004337 Drug Carriers Forms to which substances are incorporated to improve the delivery and the effectiveness of drugs. Drug carriers are used in drug-delivery systems such as the controlled-release technology to prolong in vivo drug actions, decrease drug metabolism, and reduce drug toxicity. Carriers are also used in designs to increase the effectiveness of drug delivery to the target sites of pharmacological actions. Liposomes, albumin microspheres, soluble synthetic polymers, DNA complexes, protein-drug conjugates, and carrier erythrocytes among others have been employed as biodegradable drug carriers. Drug Carrier
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006820 Hyaluronic Acid A natural high-viscosity mucopolysaccharide with alternating beta (1-3) glucuronide and beta (1-4) glucosaminidic bonds. It is found in the UMBILICAL CORD, in VITREOUS BODY and in SYNOVIAL FLUID. A high urinary level is found in PROGERIA. Amo Vitrax,Amvisc,Biolon,Etamucine,Healon,Hyaluronan,Hyaluronate Sodium,Hyvisc,Luronit,Sodium Hyaluronate,Acid, Hyaluronic,Hyaluronate, Sodium,Vitrax, Amo

Related Publications

Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
January 2014, Nature communications,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
November 2001, Circulation,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
November 2008, Circulation research,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
December 2010, Journal of nanobiotechnology,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
June 2011, Journal of the American College of Cardiology,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
December 2021, International journal of molecular sciences,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
January 2022, International journal of nanomedicine,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
July 2019, Molecular pharmaceutics,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
January 2013, PloS one,
Lisha Liu, and Hongliang He, and Mengyuan Zhang, and Shuangshuang Zhang, and Wenli Zhang, and Jianping Liu
September 2014, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!